Mathematical Modelling of Pattern Formation in
Yeast Biofilms

Alex Tam?!?
Ben Binder? Ed Green?  Sanjeeva Balasuriya?
Ee Lin Tek®  Jennie Gardner®*  Jo Sundstrom®  Vlad Jiranek®
1School of Mathematics and Physics, University of Queensland
2School of Mathematical Sciences, University of Adelaide

3Department of Wine and Food Sciences, University of Adelaide

November 20, 2019

5
N

THE UNIVERSITY OF QUEENSLAND THE UNIVERSITY

AAAAAAAAA ADELAIDE



About Me

e 2011-2015: UG/Honours, University of Adelaide
e Free surface flow over topography

e 2016-2019: PhD, University of Adelaide
e Modelling yeast biofilm growth
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e Sep 2019—present: Postdoc, UQ
e Modelling actomyosin networks in the cell cortex
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e Twitter: @xelamaths


https://twitter.com/xelamaths

Yeast

e Single-cell fungi used in food and drink production (beer, wine,
bread, vegemite)
o Bakers' yeast is a common model organism

e Shares important characteristics with plant and animal cells
e First eukaryotic genome to be completely sequenced
e Helps develop antifungals and understand (cancer) cell division
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Fungal Infections

e Pathogenic yeasts (e.g. Candida albicans) colonise medical
devices and cause persistent infections

e Resist antimicrobial therapy — expensive surgery often needed
e Especially dangerous to immunocompromised people
o Affects 1-2% of ICU patients, with up to 40% mortality rate!

e Emerging pathogen C. auris: Japan 2009, 5 continents since
e Highly resistant and difficult to diagnose

Countries reporting cases of Candida auris,
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o We seek common mechanisms underlying yeast biofilm growth

'P. G. Pappas et al., Nat. Rev. Dis. Primers 4 (2018), 18026.
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Yeast Biofilms

e To help them survive, pathogenic yeasts form biofilms: sticky
communities of cells and fluid existing on surfaces

e Lab-grown biofilms of bakers' yeast form a floral pattern®

(a) Day 3 (b) Day 5 (c) Day 7 (d) Day 10

e Mechanisms of floral pattern formation only understood
qualitatively
e Nutrient-limited growth
e Mechanical forces (e.g. extracellular fluid flow, adhesion,
surface tension)

2T. B. Reynolds and G. R. Fink, Science 291 (2001), pp. 878-881.
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Quantifying Biofilm Patterns

e We ran 13 experiments, and took 4 photographs of each
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Modelling Pattern Formation

[ Reaction—diffusion ] [ Mechanochemical j
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e Alan Turing, 1952 e James Murray, 1980s

e Movement & e Mechanical /chemical
consumption of interactions between
nutrients, cell cells and environment
proliferation (e.g. adhesion, fluid

o Well-established mechanics)
analytical methods ® More detail, complexity )




Modelling Pattern Formation

[ Reaction—diffusion ] [ Mechanochemical ]
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Nutrient-Limited Growth: Reaction—Diffusion Model

o Reaction—diffusion system with non-linear degenerate diffusion
for cell spread

Enables cell density profiles with compact support

Models random motion of cells with non-unity aspect ratio®

n(x, t): numerical cell density

g(x, t): nutrient concentration

D: diffusion coefficient ratio, D,/Dg

e Consider planar geometry accurate for r — oo

on_ 50 (,8nm)
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3M. J. Simpson, R. E. Baker, and S. W. McCue, Phys. Rev. E 83 (2011),

0121901.
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Travelling Wave Analysis

e Travelling waves are a possible explanation for constant-speed
expansion

e Introducing the travelling wave co-ordinates z = x — ct and
applying BCs yields a system of ODEs

e Defining ¢ = [, n~*ds removes singularity as n — 0

ndn 1(c cn cg)
o T lc—ch—w—
n= dz D n=20
dg
g=0 PP g=1
— =ng—cw
dz
n(z) V—_.
g(2) .
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Travelling Wave Analysis

e Travelling waves are a possible explanation for constant-speed
expansion

e Introducing the travelling wave co-ordinates z = x — ct and
applying BCs yields a system of ODEs

e Defining ¢ = [; n~*ds removes singularity as n — 0

dn 1( )
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n= dC D ¢ n =
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Estimating the Diffusion Ratio

e There is a unique* (minimum) wave speed c corresponding to
each D

o We estimate D using experimental expansion speed

e Mean data: D = 0.47; Experimental range: D € [0.18,1.02]
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*J. Miiller and W. van Saarloos, Phys. Rev. E 65 (2002), 061111.
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2D Linear Stability Analysis
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2D Linear Stability Analysis

o Experiments (13)
e ] Theory
Circular Numerics
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Sliding Motility

e We now consider mechanics in addition to nutrient limitation
e One hypothesis is that yeast biofilms expand by sliding
motility®
e Yeast adheres weakly to substratum — enables radial growth as
cells proliferate
e Biofilm takes up nutrients from the substratum

e Nutrient consumption produces new cells and extracellular fluid
e Cells and fluid spread passively as a unit

Mixture of cells and ECM

Low surface tension

Weak adhesion

>T. B. Reynolds and G. R. Fink, Science 291 (2001), pp. 878-881.
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Two-Phase Fluid Model

Z Mixture of cells and ECM
Free surface z = h(r,t)

Axisymmetric cylindrical geometry.
e Biofilm occupies 0 < r < S(t) and 0 < z < h(r, t)
Biofilm is a mixture of two Newtonian viscous fluid phases:
e Living cells ¢,(r, z, t) and ECM ¢(r, z, t), with ¢, + ¢ =1
e Similar physical properties: p, = Pm, tn = Um, €tc.
e Large interphase drag: u, = u,,
No tangential stress on biofilm—substratum interface
Thin aspect ratio

Hs Hp
R—b—5<<1, Rb—(’)(e)



Governing Equations

e Mass balance (fluid phases)

0,

6¢t + V- ($ott) = Vnbngo — Vo
O
% +V - (mtt) = Yo + Vb

e Mass balance (nutrients in the substratum and biofilm)

0gs
> = D,V
0
ai: + V- (godmu) = D, Vg, — nnghs

e Momentum balance (fluid mixture)

V-o=20
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Boundary Conditions

e Boundary conditions for nutrients and fluids close the model

z

Kinematic
No tangential stress

No-flux
S(t)

i No radial stress
Mass transfer A :
A :
1

-

No penetration, no tangential stress
No-flux

e Nutrient transfer conditions on z = 0:

Ogs Ogp

DSE:—Q(gs—gb), Dy 3 =-Q(gs — 8b)

e No tangential stress on the substratum models weak adhesion
e Free surface normal stress proportional to local curvature:
n-(¢pqo-n)=—-yk on z=h
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Extensional Flow Scaling

e Scaling based on relevant physics
e Thin biofilm (aspect ratio € < 1)
e Low surface tension
e Nutrient-limited growth

e Variables
(r, Z) = (Rb?, 5Rb2), (Urr Uz) = (wnGRbﬁrv EwnGRbUAz)v
t . . .
t=u.¢ &~ G&. 8 = Ggh, p=PaGup
e Parameters (estimated based on experiments)
Ym YaG . ey
vV, = =011, V4= =0, = —F—— =0,
v, T T VLGRu
s ¥nGR} ulis
D=—"+ =434, Pe=-—>=0095, 7T=—>=315,
UnGR? °= "D, D,
QRy QRy
Qs = eD. 209, Q= Dy 8.65
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Thin-Film Model

e Expand variables

h~ ho(r, t)+€2hi(r, t), Gn~ Pnolr, z, t)+%Pn1(r 2, t), etc.

e Dimensionless model (dropping hats)
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Thin-Film Model

e Expand variables
h~ ho(r, t)+€2hi(r. t), ¢n~ Ono(r,z, t)+%pni(r, z, t), etc.
e Simplified leading-order model

! 8 (ruro) + auzo = (1+ V) ¢nogho
ag)"o + == (rurocl),,o) aaz (Uz00n0) = Gro&bo — Vadno
o
T =0
o 0
13 e ] s
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Thin-Film Model

e Integrating across biofilm depth eliminates z dependence

_ 1 (h
6= | dncz

e Applying BCs gives a 1D system for r € [0, S(t)]

% + 13 ~ (ruroho) = (1+ W) Grogioho
62):0 + uro ag):() = ¢no [80 — Vo — (14 Vi) dnogbo]
ag:" =D [i :r (r%) — Qs (&0 _gbo)]
Pe [ho ag"" +31 aar (rur(1- ano)gboho)] = %% (rho agﬁo)
+ Qb (8s0 — 860) — T Pno&boho
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Numerical Solutions
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Radius (5 days)

Effect of Parameters on Expansion Speed
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What About Surface Tension?

e In different experiments, yeast colonies can contain ridges®

e

e Surface tension does not affect biofilm size, but can inhibit
ridge formation
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6J. Marsikova et al., BMC Genom. 18 (2017), pp. 1-16.
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Summary

Yeast biofilms are a leading cause of bloodstream infections
We modelled two hypothesised biofilm growth mechanisms

e Nutrient-limited growth
e Sliding motility

Reaction—diffusion model with nonlinear degenerate cell
diffusion could explain expansion speed and floral pattern’

Two-phase thin-film fluid model for sliding motility predicts
expansion in greater detail®

Future work: 2D solutions to the fluid model
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UQ Project: Actomyosin Networks

e Actin and myosin interactions in the cortex govern cell shape,
movement, and division

e In experiments, disordered actomyosin networks contract

e Mechanisms of contractile stress generation currently disputed

Actomyosin Network at t = 0.200000

Actomyosin Network at t = 8.000000
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