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Motivation: Cell Cortex

e Cortex deformation controls cell motility and division

e Movement of actin and myosin deforms the cortex

sctinconax  lamelipadivm  substratum.
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Actin and Myosin

e Actin molecules form polarised filaments (~ 1 pm)
e Myosin forms molecular motors that bind to filaments
e Hydrolyse ATP and move towards actin filament plus ends
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e Actin—myosin interactions can generate contraction/expansion
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e In the cortex, filaments have random positions and orientations

e Research question: Why do disordered networks contract?
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2D Agent-Based Model

e Simulate evolution of network model DOF:
e Filament positions: z(s, t) = (x;, y;), represented as chains of
springs connected by nodes
e Motor relative positions: my(t) € [0, L;], represented as springs
with equilibrium length zero
e Motors attach at random intersections, detach at
force-dependent rate

° acts at filament intersections without a motor
e Point-wise drag that restricts relative filament motion
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Energy Method

e Minimiser of energy functional solves force-balance equations

e Time-discrete functional contains each mechanical feature as a
potential ‘energy’:

e Filament stretching e Protein friction

e Filament bending e Motor stretching

e Filament drag e Motor movement
° provide measure of resistance to each force
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Energy Method
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Forces and Stress

e Introduce forces acting on domain
boundary

e |agrange multipliers that constrain
domain size and shape

Etotal = Enetwork + Fx - Lx + Fy : Ly Zi(o(t), t)

Zi(si, t)
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e Method enables calculation of: ot Y
e Force components
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e Stress (0 < 0: contraction, 0 > 0: expansion)
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Results: Actin Bending Facilitates Contraction

e Semi-flexible networks contract in repeated (25) simulations!
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A K. Y. Tam, A. Mogilner, and D. B. Oelz, “Protein friction and filament
bending facilitate contraction of disordered actomyosin networks”,
Biophysical Journal 120, 11247 (2021).
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Two-Filament System

e Follow-up question: Is bending-induced contraction a
network-scale effect, or can two filaments explain it?
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e Assumptions:

e Filaments and motors are inextensible
No protein friction
Dense background network provides drag
Vertical symmetry
Fast-moving motor: V,, — oo
Small bending: k* =1/¢, e < 1
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Simplified PDE Model for Two Filaments

Taking At — 0 yields the PDEs

0z 1 1
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Expand variables: z = zg + €z + O(g?),
m= mg +emy + O(e?), 0 = 0o + €01 + O(€?), etc.
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Leading-order solution is for rigid filaments

First-order corrections describe effect of bending
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Geometric Asymmetry Facilitates Contraction

e Rigid filaments have polarity-reversal symmetry and generate
zero net stress
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2A. K. Y. Tam, A. Mogilner, and D. B. Oelz, “F-Actin Bending Facilitates
Net Actomyosin Contraction By Inhibiting Expansion With Plus-End-Located
Myosin Motors”, BioRxiv (2021).
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Summary

e We simulated actomyosin networks and a two-filament-motor
system to understand how actin bending produces contraction
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Summary

e We simulated actomyosin networks and a two-filament-motor
system to understand how actin bending produces contraction
o “Legally Blonde theory of actomyosin contraction”: If you
want an 83% rate of return on dinner invitations to understand
how actin filaments facilitate cell division, just remember...
e Bend...

e And snap!

JAndisnap!
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