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Invading and Retreating Populations
• Invading populations common in cell biology1 and ecology.

• Retreating populations can also occur.

1P. K. Maini, D. L. S. McElwain, and D. I. Leavesley, (2004).
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Mathematical Models of Biological Invasion

• Reaction–diffusion equations often used to model populations.
• Travelling-wave solutions capture constant invasion speed.
• Few parameters: helps fit models to data.

• Fisher–KPP (FKPP) equation: ut = uxx + u(1− u).

t

• FKPP equation has practical disadvantages.
• Cannot identify boundary between un/occupied regions.
• Cannot model population extinction.
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Dimensionless Fisher–Stefan Model
• Recast FKPP as moving-boundary problem on 0 < x < L(t).

ut = uxx + u (1− u) on 0 < x < L(t),
ux = 0 on x = 0,

u = 0, L′(t) = −κux on x = L(t),
u(x , 0) = u0(x) on 0 < x < L(0).

• L(t) defines interface between un/occupied regions.
• Solutions with population extinction possible2.
• Travelling wave emerges if ever L(t) > Lcrit = π/2.
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2M. El-Hachem, S. W. McCue, J. Wang, Y. Du, and M. J. Simpson, (2019).
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2D Fisher–Stefan Model and Numerical Solutions

ut = ∇2u + u (1− u) on Ω(t),
u = 0, V = −κ∇u · n̂ on ∂Ω(t),

u(x, 0) = u0(x) on Ω(0).

• Circular populations survive if ever R(t) > Rc .
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Survival and Extinction in 2D
• Circular populations survive if ever R(t) > Rc .

3

• Survival and extinction in general 2D geometry unexplored.
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3M. J. Simpson, (2020).
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Numerical Solutions for Initially-Rectangular Regions

• Initially-rectangular populations can survive or become extinct.
• Rectangle area alone cannot explain survival/extinction.
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Survival and Extinction in Rectangular Geometry
• As u → 0, will population recover or become extinct?
• Leading-order solution on fixed domain.
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• Survival requires∫
Ω

û(x , y , t)︸ ︷︷ ︸
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>
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Rectangular Numerical Solution Summary
• Let Lx(t), Ly (t) be widths of Ω(t) in numerical solutions.
• Analysis suggests population survives if ever

Lx > π, and Ly > π

√
L2

x
L2

x − π2 .

• Numerical solutions agree with analytical result.
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Summary

• Fisher–Stefan model modifies Fisher–KPP equation by
introducing a moving boundary.
• Knowledge of geometry necessary to predict survival and

extinction in 2D populations.
• Preprint available on arXiv4.
• Level-set software available on GitHub: alex-tam.
• Future work: Linear stability analysis of planar fronts.
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