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Invading and Retreating Populations

e Invading populations common in cell biology! and ecology.
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e Retreating populations can also occur.
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Mathematical Models of Biological Invasion

e Reaction—diffusion equations often used to model populations.

e Travelling-wave solutions capture constant invasion speed.
e Few parameters: helps fit models to data.

o Fisher—KPP (FKPP) equation: u; = ux + u(1 — u).
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e FKPP equation has practical disadvantages.

e Cannot identify boundary between un/occupied regions.
e Cannot model population extinction.
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Dimensionless Fisher-Stefan Model
e Recast FKPP as moving-boundary problem on 0 < x < L(t).

Ur = Uxx + U (1 —u)

u=0,
u(x,0) = up(x)

on 0<x<L(t),
ue=0 on x=0,
L'(t) = —kuy on x=L(t),
on 0<x<L(0).

e [(t) defines interface between un/occupied regions.

e Solutions with population extinction possible?.

e Travelling wave emerges if ever L(t) > Lot = T/2.
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2D Fisher—Stefan Model and Numerical Solutions

u=V3u+u(l—u) on Q(t),
u=0 V=—kVu-n on 09(t),
u(x,0) = up(x) on Q(0).
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Survival and Extinction in 2D
e Circular populations survive if ever R(t) > R..3

e Survival and extinction in general 2D geometry unexplored.
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Numerical Solutions for Initially-Rectangular Regions

e Initially-rectangular populations can survive or become extinct.

e Rectangle area alone cannot explain survival /extinction.
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Survival and Extinction in Rectangular Geometry

e As u — 0, will population recover or become extinct?

e Leading-order solution on fixed domain.

u=0
Y ﬁt:ﬁxx+ﬁyy+f1 4/
(0,0)
- X —>
u(x,y, t) ~ Ag1sin (%) sin (%/) e_(ﬁJrW_l)t as t— 0.

e Survival requires
/ u(x,y, t) > / —Vi-n = XY >7nVY2+ X2
Q oQ

Population Loss through 002
accumulation in Q due to diffusion
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Rectangular Numerical Solution Summary

o Let L, (t), L,(t) be widths of Q(t) in numerical solutions.
e Analysis suggests population survives if ever

L

Ly, >, and L, >m|——"—.
X Y L2 — 72

o Numerical solutions agree with analytical result.
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Summary

e Fisher—Stefan model modifies Fisher—-KPP equation by
introducing a moving boundary.

o Knowledge of geometry necessary to predict survival and
extinction in 2D populations.

e Preprint available on arXiv*.

e level-set software available on GitHub: alex-tam.

e Future work: Linear stability analysis of planar fronts.
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