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Hydraulic fall

Waveless flow upstream and downstream

Characterised by upstream Froude number
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(flow rate Q = WHU)

Weakly nonlinear and fully nonlinear models

Forward and inverse methods
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Experimental method

Closed-loop water channel
Pump frequency controls flow rate, Froude number
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Figure : Water channel
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Experimental method

Semicircular and Gaussian topography

Nikon D40X used to photograph steady hydraulic falls

Spotlights, grids, dye enhance visualisation

Free surface profiles (x̂j , ŷj) extracted from images
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Potential flows

Steady flow

Irrotational flow: v = (u, v) = ∇φ
Incompressible fluid: ∇.v = 0

Dimensionless model equations:

φxx + φyy = 0 for σ < y < 1 + η

φy = φxηx on y = 1 + η
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on y = 1 + η

φy = φxσx on y = σ

φ→ x and y → 1 as x → −∞
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Weakly nonlinear model

Forced Korteweg-de Vries (KdV) equation

ηxx +
9

2
η2 − 6(F − 1)η = −3σ

Forward problem – unknown F and η

d2η
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+

9

2
η2 − 6(F − 1)η = −3σE

Inverse Problem – unknown σ
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Nonlinear model
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Model based on Binder, Blyth, and McCue (2013)
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, τ = log |v|

τ±(s) =

∫ ∞
−∞

θ−(t)

1± eπ(s−t)
− θ+(t)

1∓ eπ(s−t)
dt

x±(s) = x±(−∞) +

∫ ∞
s

e−τ
±(t) cos θ±(t) dt

y±(s) = y±(−∞) +

∫ ∞
s

e−τ
±(t) sin θ±(t) dt
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Semicircle results
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Figure : Solid curves: forward problem. Broken curves: inverse problem.
FE = 0.38. (Tam et al. 2015)

Forward nonlinear solution from Forbes (1988)
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Semicircle results
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Figure : (a) Nonlinear (solid), weakly nonlinear (broken), and experiment
(markers). (b) E = |M − α|, Nonlinear (circles), weakly nonlinear
(crosses)

Weakly nonlinear model over-estimates Froude number

Both models accurately predict maximum topography height
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Gaussian results
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Figure : Solid curves: forward problem. Broken curves: inverse problem.
FE = 0.45.

Smooth topography reduces error at bump supports

Recirculatory regions not predicted by potential flow model
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Conclusion

Weakly nonlinear (KdV) and nonlinear models

Inverse methods used to predict topography in experiments

Both models accurately predict maximum topography height

Nonlinear model accurately predicts topography shape
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