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Invading and Receding Biological Populations

� Invading/receding populations common in cell biology1 and ecology.
� Invading: occupied region grows.
� Receding: occupied region shrinks.

� Seek prototype models for range of phenomena:
� Constant speed of front, i.e. travelling waves.
� Well-defined interface between occupied and unoccupied regions.
� Invasion and/or recession.

� Continuum, single-species population represented by density u(x; t):

1P. K. Maini, D. L. S. McElwain, and D. I. Leavesley, Tissue Eng. (2004).
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Prototype One-Species Mathematical Models
1. Fisher–KPP (FKPP) equation: ut = uxx + u(1� u):

t

� Travelling waves, speed c � 2:
� Non-compact support.
� Population cannot recede.

2. One-Phase Stefan Problem:
� Models change of phase, e.g. ice melting, water solidification.
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1D Fisher–Stefan Model

� Combines FKPP model with Stefan-like condition.

ut = uxx + u(1� u) on 0 < x < L(t);
u(0; t) = 1; u(L(t); t) = uf ;

Lt = ��ux(L(t); t); L(0) = L0

u(x ; 0) = U(x) on 0 < x < L0:

� 0 � uf < 1; usually uf = 0 (compact support).
� Interface between occupied/unoccupied regions is the point x = L(t):
� Parameter � determines whether population invades or recedes.

� � > 0 : invasion. � < 0: recession.
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1D Fisher–Stefan: Travelling Wave Solutions

� Assume boundary moves with constant speed, L0(t) = c;
� Introduce travelling wave variable, z = x � L(t) = x � L0 � ct:
� Biologically-relevant (u � 0) travelling waves for �1 < c <1:2

� Unique wave speed c corresponding to each � > �1=(1� uf):

κ = 0.5

c = 0.197
uf = 0.1

2M. El-Hachem, S. W. McCue, and M. J. Simpson, Math. Med. Biol. (2022).
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2D Fisher–Stefan Model

����������

�

�

������

�������−  ��
ut = uxx + uyy + u(1� u) on 0 < x < L(y ; t);

u = 1 on x = 0;
u = uf � K on x = L(y ; t);

V = ��ru � n̂ on x = L(y ; t);
u(x ; y ; 0) = U(x ; y) on 0 < x < L(y ; 0):

� Interface now represented by the curve x = L(y ; t):
� Incorporate curvature-dependent surface tension term at interface3.
� Biology: surface tension might represent cell–cell adhesion4.
� Question: Can front patterns emerge in 2D?

� Advancing FKPP fronts are stable, but what about receding fronts?
� How does surface tension influence results?

3J. Chadam and P. Ortoleva, IMA J. Appl. Math. (1983).
4G. Forgacs et al., Biophys. J. (1998).
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Linear Stability Analysis
� Perturb front shape and population density

� Perturbations of form "e
iqy+!t : Wave number q; growth rate !:

� Stable: ! < 0: Unstable: ! > 0:
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L(y ; t) = ct + "eiqy+!t +O("2); � = x � L(y ; t) = x � ct � "eiqy+!t

u(�; y ; t) = u0(�) + "u1(�)e
iqy+!t +O("2):

� Leading-order solution u0(�) is the planar (1D) travelling wave.
� First-order correction problem determines growth rate !(q):
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Advancing Fronts are Stable (Zero Surface Tension)
� Advancing planar waves stable to perturbations of all wave numbers.
� Consistent with FKPP equation and planar melting in Stefan problem.
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Receding Fronts are Unstable (Zero Surface Tension)
� Receding planar waves unstable to perturbations of all wave numbers.
� Consistent with planar solidification in Stefan problem.
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Surface Tension Stabilises Receding Waves
� Regularised receding fronts have instability only for small q.
� Most unstable wave number indicates preferred pattern wavelength.
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Upcoming Project!
There will soon be a 2.5-year Postdoc (based at U. Adelaide) and PhD
scholarships (at UoA and/or UniSA) for an ARC Discovery Project.
� Understanding mechanisms that inhibit/promote biofilm expansion.

� Agent-based modelling.
� PDE models (reaction–diffusion, thin-film, viscous flow).
� Scientific computing and numerics.

� Please chat if you are interested or know someone who might be!

Substratum z = −Hs

z

Rb

Free surface z = h(r,t)

r

Hb
 S(t)

Mixture of cells and ECM

UoA Project Team: Ben Binder, Ed Green, Jennie Gardner

� Plus international collaboration with U. Southampton and U. Kent!
11



Summary
� Fisher–Stefan model has travelling waves for �1 < c <1:

� Receding fronts unstable, regularised by surface tension.
� Future work:

� Analyse two-phase Fisher–Stefan model.
� Stability analysis of general moving-boundary problems.

Code Paper
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Bonus: Linear Stability Boundary-Value Problem
� Both BVPs are solved on �1 < � < 0:

Leading-Order problem for the travelling wave, u0(�):

d2u0
d�2 + c du0

d�
+ u0(1� u0) = 0;

u0(�1) = 1; u0(0) = uf ;

du0(0)
d�

= �
c
�
:

O(") problem for the correction, u1(�):

d2u1
d�2 + c du1

d�
+

[
1� ! � q2 � 2u0(�)

]
u1(�) = �

(
! + q2) du0

d�
;

u1(�1) = 0; u1(0) = �q2;

du1(0)
d�

= �
!

�
:
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Bonus: Level-Set Method
� Level-set and finite-difference methods used to solve Fisher–Stefan

model numerically.
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Bonus: Growth Rate Saturation

� Growth rate saturates at long time in numerical solutions.
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