
Mathematical Modelling of
Pattern Formation in Yeast

Biofilms

Alexander Tam

December 9, 2019
Thesis submitted for the degree of

Doctor of Philosophy
in

Applied Mathematics
at The University of Adelaide

Faculty of Engineering, Computer and Mathematical Sciences
School of Mathematical Sciences



Contents

Contents

Abstract ix

Declaration xi

Acknowledgements xiii

1 Introduction 1
1.1 Yeast Biofilms . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Mathematical Modelling of Biofilms . . . . . . . . . . . . . . . . 11

1.2.1 Reaction–Diffusion Models . . . . . . . . . . . . . . . . . 12
1.2.2 Continuum Mechanical Models . . . . . . . . . . . . . . 17

1.3 Thesis Objectives and Structure . . . . . . . . . . . . . . . . . . 25

2 Quantifying Yeast Biofilm Growth 29
2.1 Mat Formation Experiments . . . . . . . . . . . . . . . . . . . . 29
2.2 Image Processing and Spatial Statistics . . . . . . . . . . . . . . 31

2.2.1 Radial Statistic . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Angular Pair-Correlation Function . . . . . . . . . . . . . 36

2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 A Reaction–Diffusion Model for Nutrient-Limited Yeast Biofilm
Growth 45
3.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Scaling and Non-Dimensionalisation . . . . . . . . . . . . 47
3.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 47

ii



3.2 Travelling Wave Analysis . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 Geometric Singular Perturbation Theory . . . . . . . . . 55
3.2.2 Numerical Integration and Sharp-Fronted Travelling Waves 63

3.3 Comparison with Experiments . . . . . . . . . . . . . . . . . . . 66
3.3.1 Linear Stability Analysis . . . . . . . . . . . . . . . . . . 67
3.3.2 Two-Dimensional Numerical Solutions . . . . . . . . . . . 71

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Multi-Phase Fluid Modelling of Yeast Biofilm Growth: Deriva-
tion and Thin-Film Limits 79
4.1 Formulation and Governing Equations . . . . . . . . . . . . . . . 80

4.1.1 Mass and Momentum Balance . . . . . . . . . . . . . . . 81
4.1.2 Initial and Boundary Conditions . . . . . . . . . . . . . . 85
4.1.3 Model Reduction . . . . . . . . . . . . . . . . . . . . . . 89
4.1.4 Thin-Film Approximation . . . . . . . . . . . . . . . . . 91

4.2 Extensional Flow Regime . . . . . . . . . . . . . . . . . . . . . 92
4.2.1 Scaling and Non-Dimensionalisation . . . . . . . . . . . . 92
4.2.2 Thin-Film Equations . . . . . . . . . . . . . . . . . . . . 96

4.3 Lubrication Regime . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.1 Scaling and Non-Dimensionalisation . . . . . . . . . . . . 107
4.3.2 Thin-Film Equations . . . . . . . . . . . . . . . . . . . . 109

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Extensional Flow Regime: Sliding Motility 119
5.1 One-Dimensional Axisymmetric Model . . . . . . . . . . . . . . 119

5.1.1 Initial and Boundary Conditions . . . . . . . . . . . . . . 120
5.1.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Comparison with Experiments . . . . . . . . . . . . . . . 126
5.2.2 The Effect of Model Parameters on Biofilm Size . . . . . 129
5.2.3 Ridge Formation and Surface Tension Effects . . . . . . . 132

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

iii



Contents

6 Lubrication Regime: Strong Biofilm–Substratum Adhesion 137
6.1 Two-Dimensional Axisymmetric Model . . . . . . . . . . . . . . 138

6.1.1 Regularisation . . . . . . . . . . . . . . . . . . . . . . . 139
6.1.2 Initial and Boundary Conditions . . . . . . . . . . . . . . 140
6.1.3 Numerical Solutions . . . . . . . . . . . . . . . . . . . . 142

6.2 One-Dimensional Simplified Model . . . . . . . . . . . . . . . . 149
6.2.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2.2 Numerical Solutions . . . . . . . . . . . . . . . . . . . . 153

6.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.1 Biofilm Size . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.2 Biofilm Thickness . . . . . . . . . . . . . . . . . . . . . 160

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Conclusion 165

A Experimental Data 173
A.1 Mat Biofilm Images . . . . . . . . . . . . . . . . . . . . . . . . 173
A.2 Mat Size Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.3 Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B Numerical Methods 183
B.1 Reaction–Diffusion Model . . . . . . . . . . . . . . . . . . . . . 183

B.1.1 Convergence of the Numerical Method . . . . . . . . . . 185
B.1.2 Circular Numerical Solutions . . . . . . . . . . . . . . . . 186

B.2 Axisymmetric Extensional Flow Model . . . . . . . . . . . . . . . 191
B.2.1 Convergence of the Numerical Method . . . . . . . . . . 198

B.3 Axisymmetric Lubrication Model . . . . . . . . . . . . . . . . . . 199
B.3.1 Generalised Lubrication Equation . . . . . . . . . . . . . 200
B.3.2 Two-Dimensional Full Model . . . . . . . . . . . . . . . . 204
B.3.3 One-Dimensional Simplified Model . . . . . . . . . . . . 211

Bibliography 213

iv



List of Figures

1.1 Examples of microbial colony patterns. . . . . . . . . . . . . . . 2
1.2 Cells of the budding yeast, S. cerevisiae. . . . . . . . . . . . . . 3
1.3 Two examples of pattern formation in yeast colonies. . . . . . . . 6
1.4 Circular and floral patterns in a yeast biofilm. . . . . . . . . . . . 7
1.5 The five stages of biofilm development. . . . . . . . . . . . . . . 7
1.6 A cell viability assay for a S. cerevisiae biofilm. . . . . . . . . . . 9
1.7 A schematic of biofilm expansion by sliding motility. . . . . . . . 10

2.1 A time series of images for a S. cerevisiae mat formation experiment. 31
2.2 An experimental photograph and corresponding binary image. . . 33
2.3 An example binary image and plot of the radial statistic, indicating

the inner radius. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 An example binary image and plot of the radial statistic, indicating

the median radius. . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 A sampled binary image and angular pair-correlation function. . . 38
2.6 An example binary image and angular pair-correlation function

power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 The median radius for all experimental photographs. . . . . . . . 40
2.8 Normalised power spectrum across thirteen experiments. . . . . . 41

3.1 Direction field of the reduced problem. . . . . . . . . . . . . . . 60
3.2 Example trajectories of the layer problem. . . . . . . . . . . . . . 60
3.3 Verifying the slow manifold approximation. . . . . . . . . . . . . 62
3.4 An example critical manifold and approximate slow manifold. . . 62
3.5 Numerical solutions of the full dynamical system. . . . . . . . . . 64

v



List of Figures

3.6 Travelling wave solutions of the reaction–diffusion model. . . . . 65
3.7 The relationship between diffusion ratio and minimum travelling

wave speed in the reaction–diffusion model. . . . . . . . . . . . . 67
3.8 Dispersion curves for experimentally feasible diffusion ratios. . . . 70
3.9 Numerical cell density solutions to the two-dimensional reaction–

diffusion model. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10 Calculation of the growth rate and dispersion relation. . . . . . . 73
3.11 Binary images of numerical solutions to the two-dimensional

reaction–diffusion model. . . . . . . . . . . . . . . . . . . . . . 74
3.12 Power spectra of two-dimensional circular numerical solutions. . . 75

4.1 A schematic of the multi-phase fluid model domain. . . . . . . . 81

5.1 Comparison between experimental data and numerical solutions
to the thin-film extensional flow model. . . . . . . . . . . . . . . 126

5.2 A numerical solutions to the thin-film extensional flow model. . . 128
5.3 The effect of parameters on biofilm size in the thin-film extensional

flow model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 A biofilm of the BR-F wild strain of S. cerevisiae, displaying ridge

formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5 A numerical solution to the thin-film extensional flow model,

illustrating ridge formation. . . . . . . . . . . . . . . . . . . . . 133
5.6 The effect of surface tension on biofilm shape in the thin-film

extensional flow model. . . . . . . . . . . . . . . . . . . . . . . 134

6.1 Numerical solution of the generalised lubrication equation in radial
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Numerical solution of the full thin-film lubrication model. . . . . 146
6.3 Numerical solution for cell volume fraction and vertical velocity in

the full thin-film lubrication model. . . . . . . . . . . . . . . . . 147
6.4 Numerical solution of the 1D thin-film lubrication model. . . . . . 154
6.5 The effects of biomass parameters and surface tension on biofilm

size in the thin-film lubrication model. . . . . . . . . . . . . . . . 157

vi



6.6 The effects of nutrient parameters on biofilm size in the thin-film
lubrication model. . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 The effects of biomass parameters and surface tension on dimen-
sionless biofilm thickness in the thin-film lubrication model. . . . 161

6.8 The effects of nutrient parameters on dimensionless biofilm thick-
ness in the thin-film lubrication model. . . . . . . . . . . . . . . 162

A.1 Photographs of the mat formation experiments, taken three days
after inoculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.2 Photographs of the mat formation experiments, taken five days
after inoculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.3 Photographs of the mat formation experiments, taken seven days
after inoculation. . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.4 Photographs of the mat formation experiments, taken at the end
of the experiment, ten days after inoculation. . . . . . . . . . . . 177

A.5 Power spectra of the final mat images. . . . . . . . . . . . . . . 182

B.1 Convergence results for the numerical scheme used to solve the
reaction–diffusion model. . . . . . . . . . . . . . . . . . . . . . 186

B.2 Power spectra of circular numerical solutions with D = 0.181. . . 188
B.3 Power spectra of circular numerical solutions with D = 0.47. . . . 189
B.4 Power spectra of circular numerical solutions with D = 1.02. . . . 190
B.5 Convergence results for the numerical scheme used to solve the

axisymmetric extensional flow model. . . . . . . . . . . . . . . . 199
B.6 Convergence results for the numerical scheme used to solve the

generalised lubrication equation in radial geometry. . . . . . . . . 203

vii



List of Tables

List of Tables

3.1 Experimental estimates for the dimensional parameters used in
the reaction–diffusion model. . . . . . . . . . . . . . . . . . . . 50

5.1 Dimensionless parameters for the thin-film extensional flow model. 124

6.1 Dimensionless parameters for the thin-film lubrication model. . . 145

A.1 Biofilm radius for each experiment. . . . . . . . . . . . . . . . . 178
A.2 Cell count and biofilm area for each experiment. . . . . . . . . . 179

B.1 Ensembles of random perturbations for circular numerical solutions
with D = 0.181. . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Ensembles of random perturbations for circular numerical solutions
with D = 0.47. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.3 Ensembles of random perturbations for circular numerical solutions
with D = 1.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

viii



Abstract

We use mathematical modelling and experiments to investigate yeast biofilm
growth and pattern formation. Biofilms are sticky communities of cells and
fluid residing on surfaces. As yeast biofilms are a leading cause of hospital-
acquired infections, researchers have developed methods of growing them on
semi-solid agar. These biofilms initially form a thin circular shape, before
transitioning to a non-uniform floral morphology. To quantify biofilm growth,
we use a radial statistic the measure expansion speed, and an angular pair
correlation function to quantify petal formation. These spatial statistics
enable comparison between experiments and mathematical model predictions.

Our motivation is to improve understanding of the physical mechanisms
governing biofilm formation. One hypothesised mechanism is nutrient-limited
growth, in which movement and consumption of nutrients drives growth
and generates patterns. Another hypothesis is that yeast biofilms expand
by sliding motility, where cell proliferation and weak biofilm–substratum
adhesion drive growth. Mathematical modelling enables us to investigate the
contribution of each hypothesised mechanism to biofilm growth and pattern
formation.

We use a reaction–diffusion system with non-linear, degenerate cell dif-
fusion to model nutrient-limited biofilm growth. This model admits sharp-
fronted travelling wave solutions that advance with constant speed, an as-
sumption consistent with experimental data. To investigate whether the
reaction–diffusion model can explain petal formation, we consider the linear
stability of planar travelling wave solutions to transverse perturbations. There
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Abstract

is good agreement between the theory and experimental data, suggesting that
nutrient-limited growth can explain floral pattern formation.

Next, we introduce biofilm mechanics by deriving a two-phase fluid model.
We treat the biofilm as a mixture of cells and an extracellular matrix, and
obtain governing equations from mass and momentum conservation. Since
yeast biofilm height is small compared to their radius, we use the thin-film
approximation in two scaling regimes to simplify the model. The extensional
flow regime involves weak biofilm–substratum adhesion, and models expansion
by sliding motility. In contrast, the lubrication regime involves strong biofilm–
substratum adhesion, and large pressure and surface tension.

We compute axisymmetric numerical solutions to both thin-film models
to investigate how mechanics affects biofilm growth. There is good agreement
between the extensional flow model and experimental data, suggesting that
sliding motility can explain expansion speed. Parameter sensitivity analyses
show that increased nutrient supply and biomass production rates generate
faster expansion. The effect of surface tension, which represents the strength
of cell–cell adhesion, is the key difference between the two regimes. In the
extensional flow model, surface tension inhibits ridge formation close to the
leading edge, but does not affect expansion speed. In contrast, surface tension
generates radial expansion in the lubrication regime.

Since the thin-film models enable us to predict biofilm height and nutrient
uptake explicitly, they provide a more detailed description of biofilm growth
than the reaction–diffusion model. However, their complexity makes it more
difficult to use linear stability analysis to investigate two-dimensional patterns.
This problem, and alternative expansion mechanisms such as osmotic swelling
and agar deformation, provide avenues for future work.
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Chapter 1

Introduction

Pattern formation, the science of orderly visible structures that seemingly
emerge spontaneously, is a discipline that has long fascinated applied mathe-
maticians. This is especially so for the patterns generated by self-organisation
of micro-organisms, which exhibit striking diversity (see Figure 1.1). An
example of these colonies is the biofilm, in which cells collect on a surface and
reside within an extracellular fluid matrix. Far from being a mere curiosity,
biofilms are ubiquitous and have extensive effects on human life. Their ability
to colonise medical devices makes them a leading cause of hospital-acquired
infection, and their unique structure can make them impervious to antimi-
crobial agents. For these reasons, the mechanisms of biofilm formation have
long fascinated researchers, and motivate the work in this thesis.

Biofilm formation is often investigated from a genetic perspective. However,
although the mechanisms of pattern formation are often genetically-driven,
the genes themselves cannot generate pattern and form. Understanding the
physical mechanisms that drive pattern formation is required to obtain a de-
tailed understanding of biofilm growth. Two prevailing mathematical theories
of pattern formation guide our approach to modelling these mechanisms. The
first is the chemical pre-patterning theory introduced by Turing [4]. His theory
describes how reaction and diffusion of two chemical species can lead to the
development of patterns such as stripes, spots, and spirals. These patterns

1
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(a) Branched.

A successful behavioral strategy utilized by some Pae-
nibacillus spp. is to cooperatively form and develop
large and intricately organized colonies of 109-1012 cells.
Being part of a large cooperative, the bacteria can better
compete for food resources and be protected against
antibacterial assaults [3,13]. Two of the most fascinating
pattern-forming Paenibacillus spp. bacteria, are P. vortex
[3,14] and P. dendritiformis [3,15]. Under laboratory
growth conditions, these bacteria can develop, like other

social bacteria, colonies that behave much like a multi-
cellular organism, with cell differentiation and task dis-
tribution [16-19] (see also Additional file 1 section I).
P. vortex possesses advanced social motility employing

cell-cell attractive and repulsive chemotactic signaling
and physical links (Additional file 1 section I). When
grown on soft surfaces, the collective motility is
reflected by the formation of foraging swarms [14] that
act as arms sent out in search for food (Additional file 1

Figure 1 Colony organization of the P. vortex bacteria. (A) Whole colony view of P. vortex, when grown on 15 g/l peptone and 2.25% (w/v)
agar for four days. The bright yellow dots are the vortices as described in the text. (B) Two colonies of P. vortex, inoculated in two parallel lines,
on 15 g/l peptone and 2.25% (w/v) agar. Structure flexibility of the colony architecture is illustrated. The colonies in A and B were grown in a
Petri dish size 8.8 cm and stained with Coomassie dyes (Brilliant Blue). The colors were inverted to emphasize higher densities using the brighter
shades of yellow. (C) Magnification of x20 into the colony pattern and vortex progress. (D) An example of a mature individual vortex
magnification x500. (E) Scanning electron microscope (SEM) observation of P. vortex illustrating a typical bacteria arrangement in the center of a
vortex. Notable, that each individual bacterium has a curvature. Scale bar in (A-B) is 1 cm, in (C) is 500 μm, in (D) is 20 μm and in (E) is 5 μm.

Sirota-Madi et al. BMC Genomics 2010, 11:710
http://www.biomedcentral.com/1471-2164/11/710
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(b) Vortex. (c) Floral.

Figure 1.1: Examples of microbial colony patterns. (a) A colony of the bac-
terium Bacillus subtilis. Image from Fujikawa and Matsushita [1], reproduced
in Tronnolone et al. [2] with permission from The Physical Society of Japan.
(b) A colony of the bacterium Paenibacillus vortex. Image reproduced from
Sirota-Madi et al. [3] under the Creative Commons Attribution 2.0 Generic
(CC BY 2.0) License, https://creativecommons.org/licenses/by/2.0/.
(c) A biofilm of the yeast Saccharomyces cerevisiae. Image: Zoltán Szenczi,
Cambridge Systems Biology Centre and Department of Biochemistry, Univer-
sity of Cambridge.

can arise when uniform steady states of reaction–diffusion models are unstable.
Turing’s theory subsequently inspired significant use of reaction–diffusion
models as prototype systems for understanding biological pattern formation
[5] . More recently, Murray [6] popularised an alternative mechanochemical
theory of pattern formation. This theory states that mechanical forces gener-
ated by interactions between cells and the environment can also give rise to
pattern and form.

Biofilms in nature typically consist of multiple species of bacteria and
yeast coexisting in a self-produced extracellular fluid matrix. In this thesis,
we restrict our investigation to biofilm formation experiments of the budding
yeast, Saccharomyces cerevisiae. These controlled experiments enable us to
focus on the mechanisms of biofilm expansion, without the need to consider
interactions between multiple species. Since S. cerevisiae is a common model
organism in cell biology research, we expect that our results will apply to
biofilms of any species. Therefore, our mathematical modelling is based on
the current understanding of S. cerevisiae, and microbial biofilm formation in

2
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1.1. Yeast Biofilms

general.

1.1 Yeast Biofilms
Yeasts are single-cell fungal organisms. As Figure 1.2 shows, each cell is
typically ellipsoidal, with a length of approximately 4 µm along its major
axis. There are approximately 1500 known yeast species [8], and they have

Figure 1.2: Cells of the budding yeast, S. cerevisiae. Image repro-
duced from Murtey and Ramasamy [7] under the Creative Commons
Attribution–ShareAlike 3.0 Unported License (CC BY-SA 3.0), https:
//creativecommons.org/licenses/by-sa/3.0/.

wide-ranging effects on human life. For example, yeasts are used extensively
in the production of food and drink such as bread and wine [9–13]. Another
beneficial application is that genetically engineered yeasts are used in the
sustainable production of chemicals and biofuels, which helps to reduce carbon
emissions [14, 15].

In nature, yeast species often reside in complex, multi-cellular communities
[10, 16–18]. A biofilm is a slimy community of bacteria or fungi existing on a
surface. An estimated 80% of bacteria in nature exists in biofilm colonies [19].
For this reason, they have been described as the ‘oldest, most successful and
widespread form of life on Earth’ [20], and have attracted significant research

3
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attention. A distinguishing feature of biofilms is that the cells adhere to each
other and reside within a self-produced extracellular matrix (ECM). This
matrix consists of up to 97% water [21], with the remainder being extracellular
polymeric substances (EPS). Although the composition and function of the
ECM may vary, it provides biofilm colonies with several advantages over
planktonic cells [20]. For example, the ECM has been observed to assist the
transportation of nutrients and water [22, 23], and prevent penetration of
harmful external substances [24].

Biofilms impact human life in many ways, and it would be advantageous
to understand and potentially control their growth. In some contexts, biofilms
can provide positive effects, for example in waste treatment [25] and microbial
fuel cells [26]. However, they are also responsible for dental plaque, which
can lead to tooth decay and gum disease [27]. Another important effect is
that biofilms of pathogenic microbes often form on indwelling medical devices
such as catheters, stents, and prostheses [19, 28, 29]. In particular, biofilms of
the yeast Candida albicans are a leading cause of hospital-acquired infections
[30], and are particularly threatening to immunocompromised people. These
biofilms can be 30–2000 times more resistant to anti-fungal therapy than
planktonic cells [19], and surgical intervention is often required to treat C.
albicans infections effectively [30]. As well as being a health risk, this places a
large financial burden on patients and health care providers [30]. If C. albicans
biofilms persist, they can cause the serious progressive infection systemic
candidiasis. This disease affects 1–2% of patients admitted to intensive
care units, representing approximately 3–5 people per 100,000 of the general
population at any time [31]. The overall mortality rate of systemic candidiasis
is thought to be 10–20% [31], but 30–40% has also been quoted [32]. The most
severe cases result in fulminant sepsis, which has a mortality rate exceeding
70% [31]. This provides a strong motivation to understand yeast biofilm
growth.

The emergence of new pathogens compounds the clinical significance of
yeast biofilms. For example, the emerging pathogen Candida auris has been

4
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detected on five continents since being first observed in Japan in 2009 [33].
C. auris has attracted attention for its ability to resist common anti-fungal
treatment, and reliable diagnostic tests are lacking [34]. Furthermore, C.
auris is capable of biofilm formation [34], making it a threat to public health.
Faced with the ever-changing range of clinically-relevant yeast species, it
would be advantageous to elucidate common mechanisms that govern yeast
biofilm formation and expansion. However, fungal biofilms are much less
widely studied than bacterial biofilms [35].

In our work, we focus on the budding yeast Saccharomyces cerevisiae,
which has emerged as a useful model organism in cell biology research [17]. In
addition to being closely related to Candida yeast species [36], as a eukaryotic
organism its basic cellular processes also have a lot in common with human
cells [37], such as the presence of a distinct nucleus and compartmentalised
sub-cellular organelles. Another advantage of S. cerevisiae in the scientific
research context is that its genome has been sequenced [38], and a wide
variety of genetic tools such as mutant libraries are available. It has therefore
assumed an important role in the identification of new targets for anti-fungal
therapy [17, 37], as well as understanding the division of cancer cells [35].

When studying yeast, it is common to grow colonies on agar plates in
a laboratory. Depending on the conditions in which S. cerevisiae is grown,
remarkably different patterns are possible. For example, when grown in low
nitrogen environments, they form filamentous colonies characterised by a
spatially non-uniform branched pattern (Figure 1.3a) [12]. In contrast, when
grown on semi-solid agar, S. cerevisiae can form mat biofilms consisting of
cells embedded in a self-produced ECM. An example of these is shown in
Figure 1.3b. These biofilms are much larger than the filamentous colonies,
and can grow to occupy an entire 90 mm Petri dish. Reynolds and Fink [17]
were the first to perform mat formation experiments, and subsequently S.
cerevisiae has been used a model for fungal biofilm formation.

In their experiments, Reynolds and Fink [17] inoculated yeast cells on a
semi-solid agar substratum. Soon after inoculation, the yeast cells formed
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(a) (b)

Figure 1.3: Two examples of pattern formation in yeast colonies. (a) A
filamentous yeast colony. Image reproduced from Binder et al. [11] un-
der the Creative Commons Attribution 4.0 International License (CC BY
4.0), https://creativecommons.org/licenses/by/4.0/. (b) A yeast mat
biofilm. Image: Ee Lin Tek, Department of Wine and Food Science, The
University of Adelaide.

a thin round biofilm, referred to as a mat. This biofilm consists of yeast
cells, which occupy approximately 90% of the colony, and a small quantity of
extracellular matrix material. Initially, mats expand in a near uniform circular
manner (Figure 1.4a). After three to five days, they then undergo a transition
to a complex spatio-temporal pattern termed the floral morphology, which is
characterised by the formation of petal-like structures along the biofilm edge
(Figure 1.4b). As this pattern is observed in repeated experiments, one of our
objectives is to understand its development.

According to current theory, biofilm development occurs in five stages [36,
39, 40], as illustrated in Figure 1.5. We summarise each of the five stages
below.

1. Adsorption: also referred to as initial attachment, this stage involves
the first physical contact between individual cells and the surface [18].

2. Adhesion: cells begin to produce extracellular material, enabling them
to cluster and affix to the surface. This stage is also termed irreversible

6
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1.1. Yeast Biofilms

(a) 3 days after inoculation. (b) 10 days after inoculation.

Figure 1.4: Two images of a yeast biofilm, showing the transition from (a)
circular growth to (b) the characteristic floral morphology. Images: Ee Lin
Tek, Department of Wine and Food Science, The University of Adelaide.

Figure 1.5: The five stages of biofilm development. (i): Adsorption. (ii):
Adhesion. (iii): Early development. (iv): Maturation. (v): Dispersal. Image
reprinted from Harding et al. [18] with permission from Elsevier.

7
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attachment [39].

3. Early development: once the biofilm has adhered to the surface, cells
begin to proliferate and increase production of EPS. The cells form
larger aggregates known as microcolonies, which later combine to form
the mature biofilm [40].

4. Maturation: in this stage, the biofilm attains its maximum size. As
this occurs, the biofilm develops a complex structure, including the
formation of water channels that aid nutrient transportation [18].

5. Dispersal: the mature biofilm releases single cells, which are then able
to re-initiate the cycle [39].

We aim to model the transition from adhesion to maturity, where the biofilm
expands and produces extracellular material. In this transition, nutrient
availability and mechanical interactions between cells and their environment
are both relevant to biofilm growth.

Interactions between yeast cells and a depleting nutrient supply is an
important determinant of the colony pattern. Since yeast cells are non-motile,
they cannot actively move in response to environmental cues such as nutrient
gradients or the presence of a chemoattractant. Instead, yeast biofilms can
only expand by cell proliferation, and this requires access to nutrients. Given
sufficient nutrients, mother cells can reproduce asexually by dividing into two
genetically identical daughter cells [41], and the colony invades new space
to prevent overcrowding. This process continues until the biofilm occupies
the entire Petri dish [17, 22, 24, 35, 42–44], at which point it can contain
more than 1× 1010 cells. If yeast cells become starved of nutrients, instead
of immediately dying they can enter a stationary phase, and can begin to
reproduce again if nutrient becomes available [45]. Due to this robustness, the
majority of yeast cells in the biofilm remain living, as images from the end of
an experiment in Figure 1.6 show. Since the overall proportion of dead cells
is small, we do not expect large variations in living cell density throughout

8
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(a) Bright-field microscopy image of
cells in a yeast biofilm.
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(b) The same cells after application
of the DiBAC4 vitality stain.

Figure 1.6: A cell viability assay, applied to cells obtained from a S. cerevisiae
(1278b strain) biofilm eight days after inoculation. The membrane of dead
cells is permeable, allowing dye to enter. This creates the fluorescence seen
in Figure 1.6b. Images: Ee Lin Tek, Department of Wine and Food Science,
The University of Adelaide.

the biofilm. Therefore, the distribution of nutrients is hypothesised to be a
major influence on yeast biofilm pattern formation.

Mechanical interactions between cells and their environment are also
thought to affect floral pattern formation. The extracellular matrix interacts
closely with the cells, because both cells and extracellular material are pro-
duced by the catabolism of cellular synthesised glucose [46]. The combination
of passive fluid and active biological matter gives biofilms distinctive mechan-
ical properties. Although biofilms are viscoelastic in general, on time scales
longer than the order of seconds they tend to behave as viscous fluids [20, 47,
48], with Reynolds numbers of Re < 1× 10−3 [49].

A notable finding of Reynolds and Fink [17] is that the glycoprotein
Flo11p is required for mat formation. Similar glycopeptidolipids are known to
increase the surface hydrophobicity of biofilms of the bacteria Mycobacterium
smegmatis. As a result, adhesion between the biofilm and substratum is weak.
Under these conditions, the prevailing hypothesis is that biofilms expand by
sliding motility, a passive form of growth whereby the colony spreads as a
unit, facilitated by the expansive forces of biomass production and reduced
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Chapter 1. Introduction

friction between the cells and substrate [50]. Figure 1.7 provides a schematic
of this mechanism.

Low surface tension

Nutrients

Weak adhesion

Mixture of cells and ECM

Substratum

Figure 1.7: A schematic of biofilm expansion by sliding motility.

In other experiments, it is possible for cells to adhere strongly to the
substratum. In these conditions, mats demonstrate wrinkling that is aligned
with the floral pattern [35]. Furthermore, studies on bacterial biofilms have
also revealed that osmotic swelling is another potential mechanism for biofilm
expansion [51–53]. This requires production of EPS, which creates an osmotic
pressure difference between the biofilm and environment. The biofilm then
physically expands by taking up water from the agar [51]. The extent to which
sliding motility and osmotic swelling contribute to expansion depends on the
microbial species and environment [53]. In some bacteria, including Bacillus
subtilis, osmotic swelling is the primary mechanism [51]. This is because the
ECM fraction in bacterial biofilms is commonly 50–90% [54], and can be as
high as 95–98% [21, 55]. The large proportion of extracellular material then
drives the osmotic pressure gradient. In contrast, we observe that the ECM
constitutes approximately 10% of S. cerevisiae mats by volume, and the effect
of osmotic pressure gradients on yeast biofilm expansion is currently unclear.
The complexity of these interacting mechanisms makes it difficult to derive
a tractable mathematical model that includes all features simultaneously.
Our objective is to develop simpler models for each of these mechanisms, to
determine the extent to which each contributes to yeast biofilm pattern.

10



1.2. Mathematical Modelling of Biofilms

1.2 Mathematical Modelling of Biofilms

Owing to their ubiquity and importance to infections, biofilms have attracted
significant attention in the applied mathematics community. A mathematical
model for a biological process can be thought of as a ‘logical machine’ for
deriving conclusions from a set of initial assumptions [56]. The challenges
of modelling are therefore two-fold. First, the initial assumptions must
adhere as closely as possible to the biological facts. Second, the model
must be amenable to mathematical analysis that gives rise to biologically
relevant conclusions. As discussed in §1.1, the mechanisms of yeast biofilm
formation are complex, encompassing processes on the scale of individual
cells to macroscopic environmental effects. It is inconceivable that we can
construct a complete mathematical description of the relevant biological
processes, such that the model remains mathematically tractable. However,
we can use simpler models that retain a few key features, to investigate
whether particular mechanisms can drive observed behaviour. Comparing
the predictions of multiple models that capture different features can then
help to provide a more complete understanding. This ability of mathematical
models to decouple complex processes provides insight and predictive power
that is not possible using experiments alone.

Mathematical models for biofilms fall into the two broad categories of
discrete and continuous. Discrete models track the movement of individual
cells in the colony [2, 57–60]. At this microscopic level, these models often
incorporate stochastic laws describing events in the life cycle of individual
cells, for example cell division and death. Since these processes depend on
nutrient availability, discrete models often involve nutrient movement, either
by considering individual nutrient particles [58], or treating the nutrient as a
continuum [59] (the latter giving rise to hybrid models). In previous studies,
discrete models have successfully replicated branched [61] and finger-like [57]
morphologies in microbial colonies.

In contrast, continuum models adopt a macroscopic view, and assume
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that substances of interest completely fill the space they occupy. The math-
ematical models then consider changes with space and time in the density
of quantities such as cells, nutrients, and extracellular fluid. An advantage
of continuum models is that they involve macroscopic parameters that are
easier to estimate from experimental data. For micro-organisms, such models
can be highly accurate, because colonies consist of millions of very small
cells. Yeast mats can evolve to contain over 1× 1010 cells, which is suitable
for continuum modelling, and would make discrete models computationally
expensive. Throughout this thesis, we will develop and analyse continuum
models for pattern formation of yeast biofilms.

A common continuum modelling approach is to model cells and nutrients
as a reaction–diffusion system [35, 44, 62–65]. The study of reaction–diffusion
systems is a mature field, and well-established analytical techniques are
available. These can help us to understand how spatio-temporal distributions
of cells and nutrients can lead to pattern formation. A limitation of reaction–
diffusion models is that they do not include the effect of colony mechanics,
such as extracellular fluid flow [66]. This has motivated the development
of continuum mechanical models, in which mechanical effects are combined
with cell proliferation, and the movement and consumption of nutrients. In
subsequent sections, we outline these two modelling approaches, and review
how they have been applied to biofilm growth.

1.2.1 Reaction–Diffusion Models
Reaction–diffusion systems are mathematical models that describe the con-
servation of mass of one or more substances as they diffuse and interact.
These models are highly versatile, and are widely applicable across chemistry
[67–74], biology [5, 64, 75, 76], physics [77], and ecology [78]. In pattern
formation, they have been commonly used as prototype models since Turing
[4] developed his chemical pre-patterning theory.

We consider the application of a reaction–diffusion model to a yeast biofilm
grown on an agar substratum. Our objective is to use a minimal model to de-

12



1.2. Mathematical Modelling of Biofilms

termine whether nutrient-limited growth alone can explain pattern formation.
Many models have adopted a two-species reaction–diffusion model, where
only cells and nutrient are present [35, 79, 80]. These predict the evolution of
the numerical cell density, n(x, t), and the nutrient (glucose) concentration,
g(x, t). Reaction–diffusion equations describing how the variables change with
space and time are obtained from the principle of mass conservation. The
general mass balance equation reads [6]

∂ρ

∂t
+∇ · q = J. (1.1)

In (1.1), ρ represents the amount of a substance per unit volume. For
yeast cells and nutrients, this could represent the numerical cell density and
concentration respectively. The vector q is the flux, which describes the
amount of the substance crossing a unit area per unit time. The source term
J represents the net creation per unit volume of the substance per unit time.

Reaction–diffusion models neglect transport by bulk motion. As a re-
sult, the flux q consists of diffusion only. Diffusion is the process by which
substances move from regions of high concentration to regions of low concentra-
tion. The rate at which this occurs is proportional to the local concentration
gradient. In general, it can also depend on the cell density and nutrient
concentration. We then obtain the general flux terms

qn = −Dn(n, g)∇n, (1.2a)

qg = −Dg(n, g)∇g, (1.2b)

where Dn and Dg are non-negative functions encoding the diffusivity of each
species. Substituting the diffusive fluxes (1.2) into the mass balance equation
(1.1) yields the general reaction–diffusion model,

∂n

∂t
= ∇ · [Dn(n, g)∇n] + Jn(n, g), (1.3a)
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∂g

∂t
= ∇ · [Dg(n, g)∇g] + Jg(n, g). (1.3b)

The source terms Jn and Jg in (1.3) are the net creation of cells and nutrients
respectively. In biofilm growth, these represent cell proliferation and the
consumption of nutrients.

Many models for microbial colonies take the form (1.3). These are the
simplest models that describe cell spread under nutrient-limited growth.
Depending on the microbial species and environment, different forms of the
diffusivities Dn and Dg, and reaction terms Jn and Jg have been proposed.
Gray and Kirwan [79] were the first to apply a reaction–diffusion model
to yeast colony growth. They proposed reaction terms Jn and Jg that are
proportional to the local cell density and nutrient concentration, a simple
form used in many subsequent models [35, 62, 64, 80, 81]. In their paper,
Gray and Kirwan [79] also incorporated a constant lag nutrient concentration
g1 such that Jn = χn(g − g1) and Jg = −σχn(g − g1), but this can be
subsequently scaled out [82]. Since nutrients disperse through the agar by
standard Fickian diffusion, Gray and Kirwan [79] assumed that the diffusion
coefficient Dg = Dg is constant. Finally, they appealed to the non-motile
nature of yeast cells to assume that Dn = 0. Their model was then

∂n

∂t
= χng, (1.4a)

∂g

∂t
= Dg∇2g − σχng, (1.4b)

where the parameter χ is the cell proliferation rate, i.e. the rate of increase
in colony area per unit of nutrient, and σ is the quantity of glucose consumed
per new cell. A useful feature of this model is that travelling wave solutions
exist for all Dg, and therefore it provides an explanation for constant speed
colony expansion.

Edelstein-Keshet [82] proposed a modification to this model by assuming
that yeast cells undergo random motion. Assuming the cell diffusivity Dn =
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Dn is also constant, they proposed

∂n

∂t
= Dn∇2n+ χng, (1.5a)

∂g

∂t
= Dg∇2g − σχng, (1.5b)

This form of linear cell diffusion model has been used extensively in models
for bacterial and yeast colonies [63, 83–85], as well as applications such as
autocatalytic chemical reactions [70, 86]. It has been the subject of much
analysis, and Billingham and Needham [70] showed that it admits travelling
wave solutions for all values of Dn and Dg. However, although (1.5) can
explain constant speed expansion, the travelling wave solutions are linearly
stable to all transverse perturbations [63]. Therefore, it cannot explain pattern
formation in two-dimensions. This, in part, motivated the application of
models with non-linear cell diffusion to microbial colonies, where Dn(n, g) is
no longer constant.

Another motivation for non-linear diffusion models is that cells do not
spread by standard Fickian diffusion. Many authors have proposed different
forms of Dn(n, g), attempting to obtain a more accurate phenomenological
description of cell spread. One possibility is to assume that the cell diffusivity
Dn ∝ ng, which has been shown to produce branched patterns [62], and
travelling wave solutions [81]. Another popular assumption is to propose that
Dn ∝ nb, for some b > 0 [35, 63, 64, 83, 87]. This gives rise to the system

∂n

∂t
= Dn∇ ·

(
nb∇n

)
+ χng, (1.6a)

∂g

∂t
= Dg∇2g − σχng. (1.6b)

Since the cell diffusivity is zero when cell density is zero, the diffusivity
Dn ∝ nb in (1.6) is termed non-linear degenerate diffusion. Such forms of
non-linear diffusion are relevant to modelling random motion of cells with
aspect ratio not equal to unity [88]. An advantage of these models is that
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they admit travelling wave solutions with compact support [64], unlike linear
diffusion models. This feature makes them suitable for describing finite-sized
colonies. Thus, non-linear diffusion models remain common in microbial
modelling literature.

Some reaction–diffusion models for biofilm growth represented variations
to the general coupled system (1.3). Many authors have introduced a third
species by considering both living (or active) and dead (or inactive) cells
[63, 83–85, 87], and modified the source term Jn to incorporate cell death.
Some models have incorporated explicit mechanisms to ensure that the cell
density does not exceed a carrying capacity. These approaches have included
assuming that reactions occur according to Michaelis–Menten kinetics [62], and
introducing a density-dependent diffusion coefficient that attains a singularity
at the maximum cell density [65]. In addition, growth in some bacterial
colonies depends on the concentration of a chemoattractant [89], which is
captured by the well-known model of Keller and Segel [90]. In this thesis,
we will not consider these variations in detail. As shown in §1.1, the rate
of cell death in yeast biofilms is low, and yeasts tend to not undergo biased
growth in response to chemical or nutrient gradients [2]. Instead of considering
these complexities, our objective is to provide a detailed comparison with
experimental data, to determine whether nutrient-limited growth is a possible
mechanism for floral pattern formation.

Although reaction–diffusion models are common, less research exists pro-
viding detailed quantitative comparison with yeast biofilm formation experi-
ments. Chen et al. [35] provided the first such comparison with S. cerevisiae
mat formation experiments. They adopted a non-linear degenerate diffusion
model of the form (1.6) with b = 1, and found good qualitative agreement in
perimeter-to-area ratio between numerical solutions and experimental pho-
tographs. However, as this work did not involve estimating parameters from
the experiments, it is not yet known whether the mathematical model will
reproduce the experimental patterns on length and time scales relevant to
the experiment. Addressing this question is crucial in determining whether
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nutrient-limited growth is responsible for the floral pattern. Quantitative com-
parison requires appropriate spatial statistics to measure pattern formation
in both experiments and model predictions. Although the perimeter-to-area
ratio provides a coarse measurement of the biofilm shape, it does not de-
scribe the size and shape of petals in the floral morphology. Thus, there is
still a need for a more detailed quantitative comparison between non-linear
reaction–diffusion models and yeast biofilm growth experiments.

We aim to use a reaction–diffusion model to investigate whether nutrient-
limited growth is the mechanism by which floral patterns form in S. cerevisiae
mats. To limit the number of parameters that we need to estimate from
experiments, we adopt a minimal modelling philosophy, and restrict ourselves
to a coupled system of the form (1.3). These models admit travelling wave
solutions, which we can exploit to help estimate parameters in the experiments.
This enables us to build on the work of Chen et al. [35] to provide a detailed
quantitative study into whether nutrient-limited growth can explain the floral
morphology. Careful comparison requires quantitative methods to measure
pattern formation in both experiments and model predictions. Implementation
of suitable spatial statistical methods is therefore part of the modelling process,
and we undertake this in Chapter 2.

1.2.2 Continuum Mechanical Models
Although commonly-used, reaction–diffusion models do not account for the
mechanical behaviour of the cells, agar, or extracellular fluid. Continuum
mechanical models address this weakness, and provide a more detailed de-
scription of biofilm growth than reaction–diffusion models. This is because
they can incorporate features such as the mechanics of cells and the flow of
extracellular fluid, in addition to nutrient movement and cell proliferation.
We review previous mechanical models of biofilm growth to identify how these
models can be adapted for S. cerevisiae biofilms.

The first attempts to systematically incorporate hydrodynamics into
biofilm models involved biofilms growing on solid, non-reactive substrata,
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immersed in a liquid culture medium from which they obtain nutrients.
These models incorporated the hydrodynamics of bulk fluid in the medium.
They then described vertical biofilm growth perpendicular to the substratum.
For example, the influential model of Wanner and Gujer [91] considered a
biofilm growing vertically into a bulk fluid, and accounts for interactions
between multiple species, biomass detachment, and variations in nutrient
concentration in the bulk fluid. Eberl, Parker, and van Loosdrecht [92]
extended this approach by using the Stokes equations to model the flow of
the bulk fluid explicitly. This enabled them to model spatially non-uniform
biofilm profiles. However, as these models treated the biofilm as rigid, they did
not incorporate the mechanics of cells and the extracellular matrix. For this
reason, and because our yeast biofilms primarily spread in the radial direction,
we do not consider these models of vertical growth in detail. We direct the
reader to the review by Klapper and Dockery [93] for further information.

An alternative approach is to model the biofilm constituents themselves
as fluids. This is relevant to S. cerevisiae mats, for which cell and ECM
mechanics are hypothesised to affect growth. Parallels between collections of
cells and viscous fluids have been prevalent since Steinberg [94] introduced
the differential adhesion hypothesis (DAH). According to the DAH, cell pop-
ulations behave like viscous liquids, where adhesive and cohesive interactions
between cells is analogous to surface tension [95]. Some early attempts at
incorporating fluid mechanics into models of microbial colony growth were
based on parallels between diffusion-limited aggregation and flow in a Hele-
Shaw cell [96–98]. Based on the similarity in patterns exhibited by both
systems, these models hypothesised that the colony could be modelled as a
viscous fluid. Since then, this hypothesis has been validated in experiments,
showing that biofilms behave as viscous fluids on time scales longer than the
order of seconds [99, 100]. However, models based on Hele-Shaw flow do not
provide an explicit theory for modelling biofilm mechanics.

To address the deficiencies of Hele-Shaw models, some authors treated
the biofilm as a single fluid, but included additional features such as reaction–

18



1.2. Mathematical Modelling of Biofilms

diffusion equations for nutrient transport. For example, Lega and Passot
[101] coupled a reaction–diffusion system for bacteria and nutrients with
hydrodynamic equations for the fluid in the biofilm. Nguyen et al. [102]
considered the effect of cell–cell adhesion in a fluid model for a yeast colony.
Giverso, Verani, and Ciarletta [103] showed that a model in which a spreading
bacterial colony is treated as a viscous fluid satisfying Darcy’s law can model
the fingering pattern seen in experiments.

When modelling biofilms, it is necessary to consider interactions between
cells, EPS, and external fluid. Multi-phase models provide a way to do this,
and involve each constituent being modelled as a fluid with its own behaviour
and properties. They have been used extensively in mathematical biology,
for example the crawling of individual cells [104, 105], and the growth of
tissues [106, 107] and tumours [108, 109]. We focus on multi-phase models as
a promising approach for biofilms. A detailed framework for the construction
of multi-phase models was provided by King and Oliver [110]. Under this
framework, biofilms are typically modelled as multi-phase mixtures of cells,
EPS, and external liquid [48, 55, 66, 111–115]. Applying conservation of mass
and momentum for each fluid phase then enables the different mechanical
behaviour of each fluid, and interactions between phases, to be taken into
account. This is important, as the birth and death of cells results in material
changing phase. This cannot be captured in single-fluid models.

Multi-phase models involve assuming that each region of space is occupied
by some fraction of each species by volume. This is the no-voids assumptions,
which is

N∑
α=1

φα = 1, (1.7)

where φα(x, t) represents the volume fraction of phase α, and N is the number
of phases in the mixture. Since it is not physically possible for multiple species
to occupy the same space simultaneously, obtaining a macroscopic model first
requires an averaging process, for example volume-averaging. Throughout
this thesis, we implicitly assume appropriate averaging has occurred, and
direct the reader to the paper by Drew [116] for further details. We obtain
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equations governing the evolution of the volume fraction of each phase from
the principle of mass conservation. Denoting the velocity of each phase by
uα(x, t), and assuming that each phase has constant density [110], the mass
balance equations read

ρα

[
∂φα

∂t
+∇ · (uαφα)

]
= Jα, (1.8)

where ρα is the density, and Jα is the net fluid production for each phase α.
Conservation of momentum then provides equations for the fluid velocities.
To each phase, we apply the Cauchy momentum equation [117],

ρα
D
Dt (φαuα) = ∇ · (φασα) + Fα, (1.9)

where σα is the stress tensor for phase α, and Fα represents net body forces.
In many biological processes, including biofilm growth, the fluid flow is slow,
with Reynolds numbers on the order of Re ≈ 0.001 [49]. For these fluids, it
is standard to neglect inertial terms in (1.9), so we obtain the momentum
balance equations [110]

∇ · (φασα) + Fα = 0. (1.10)

Given appropriate constitutive laws for the source terms Jα, stress tensors σα,
and body forces Fα, we can obtain a closed model for the volume fractions of
each phase in the mixture.

Through the constitutive laws, the basic framework of multi-phase models
can incorporate features of biofilm, tumour, and tissue growth. In these
models, a common constitutive assumption is to consider the phases as
Newtonian viscous fluids. The stress tensor is then given by

σij = −
(
p+ 2µ

3
∂uk

∂xk

)
δij + 2µeij, (1.11)

where p is the pressure, µ is the dynamic viscosity, δij is the Kronecker delta,
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and eij is the rate of strain tensor, given by

eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
. (1.12)

In general, biological models retain the divergence term in the stress tensor
(1.11). In passive fluids these terms vanish due to incompressibility, but
they can be non-zero in biological contexts due to local fluid production, for
example by cell proliferation. The coefficient of −2µ/3 for the divergence
terms arises from Stokes’ hypothesis [118–120].

In some biological models, the authors introduced a modification to the
standard stress tensor for viscous fluids. This is because some biological
materials, such as cells, can generate forces by responding actively to envi-
ronmental cues [107, 109, 119, 121–123]. These forces generate an additional
intraphase pressure, denoted Σ. The total pressure on each phase is then

pα = p+ Σα, (1.13)

An example of these environmental cues is the concentration of a chemoat-
tractant, which can prompt active movement by chemotaxis [123]. Another is
cell–cell contact, whereby cells can experience additional stress when densely
packed, which occurs in regions of high cell volume fraction [121]. The
functions Σα can therefore depend, for example, on the chemoattractant
concentration and cell volume fraction. Although bacteria growing on soft
agar can undergo chemotaxis facilitated by flagella-mediated motility [124],
we do not expect these additional pressure terms to play a major role in yeast
biofilm formation. This is because yeast cells do not possess flagella, and thus
cannot undertake this active motion. As yeast cells are non-motile, we focus
on models using the standard Newtonian viscous constitutive relation (1.11).

In addition to mechanics, models for biofilm formation commonly include
additional equations to describe nutrient transport [52, 111, 113, 114, 125–
127], and the effect of quorum sensing molecules [112, 120, 128]. Recent work
has also established the importance of osmotic swelling to bacteria biofilm
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expansion [51, 53, 127]. In this mechanism, the production of EPS in the
biofilm generates an osmotic imbalance between the biofilm and agar [51,
52]. The biofilm then restores equilibrium by drawing in water from the
substratum. This results in physical swelling of the biofilm. In the multi-
phase fluid models, osmotic influx is represented by an additional source term
for the extracellular fluid phase [51, 127]. For example, Srinivasan, Kaplan,
and Mahadevan [127] assumed a mass balance for extracellular fluid of the
form

∂

∂t
(hφ2) + ∂

∂x
(Q2(x)) = Q0φ2

(
φ3

1 − φ3
0

)
, (1.14)

where h is the biofilm height, Q2 represents the horizontal flux of passive
fluid, φ1 is the volume fraction of active material, φ2 is the volume fraction of
passive extracellular fluid, and Q0 and φ0 are constants. In addition to osmotic
swelling, a series of papers by Trinschek, John, and Thiele [52] included the
contribution of surface forces in a model for osmotic swelling-driven expansion
of bacterial biofilms [52, 129, 130]. Their results suggested that wettability
and the strength of surface tension govern colony morphology [130].

Experimental and modelling work by Seminara et al. [51] provided con-
vincing evidence that osmotic swelling is a more important driver of expansion
than sliding motility in B. subtilis biofilms. However, in these colonies the
volume fraction of cells is estimated to be approximately 2–10%. In contrast,
we estimate that 90% of S. cerevisiae mats are taken up by cells. Therefore,
we expect that cell proliferation will play a larger role than osmotic swelling
in driving S. cerevisiae mat expansion. This occurs in sliding motility, which
was hypothesised by Reynolds and Fink [17] as the mechanism of expansion.
In addition, as sliding motility involves weak cell adhesion, we expect that
surface forces will also play a reduced role. In this context, the Newtonian
viscous constitutive relation is suitable for modelling yeast biofilm expansion.
We also assume that the incompressibility of the material is sufficient to
facilitate expansion when cells proliferate, without invoking osmotic swelling.

Once the constitutive laws, initial conditions, and boundary conditions
have been established, the resulting model is often complicated. A common
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technique in applied mathematics is to simplify this model by considering
distinguished limits as some parameter becomes large or small. To obtain
accurate models, the choice of distinguished limit requires physical insight.
A relevant example is that the radius of S. cerevisiae biofilms significantly
exceeds their height. Biofilms are consequently well-suited to the thin-film
approximation. These are a class of approximations applied when the physical
domain is thin in one direction relative to another. The theory originated
in the study of lubricated bearings in machinery [131], and is therefore also
known as lubrication theory. Applying this theory involves introducing a
slenderness parameter

ε = H

L
, (1.15)

where the domain has characteristic height H and characteristic length L,
and where 0 < ε � 1. Scaling the variables by their natural length scale
introduces the small parameter ε into the model. Asymptotic analysis then
provides a way to obtain simpler models, in which physical effects of similar
importance are balanced, and less important features are neglected.

In many previous works that adopted the thin-film approximation in
multi-phase models, the authors derived a fourth-order generalised lubrication
equation for the biofilm height [51, 52, 120, 125–127, 129, 130]. For a
Newtonian viscous fluid, in one spatial dimension this equation takes the form

∂h

∂t
+ γ∗

3
∂

∂x

(
h3 ∂

3h

∂x3

)
= J, (1.16)

where γ∗ is the dimensionless surface tension coefficient (or inverse capillary
number), and J is a source term that accounts for biomass production.
A common feature of these models is that the derivation of a generalised
lubrication equation requires the assumption of strong adhesion between the
biofilm and substratum. As a result, flow is driven by a large pressure that
must be balanced with a comparatively large surface tension. Although these
models have been commonly applied to bacterial colonies, S. cerevisiae mats
are hypothesised to expand by sliding motility. This involves increased cell
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surface hydrophobicity, and hence weak adhesion between the biofilm and
agar. Modelling sliding motility therefore requires a different approach.

In addition to strong adhesion, Ward and King [120] also considered the
possibility that the biofilm behaves as an extensional flow. As this requires
assuming weak adhesion between the biofilm and substratum, it is particularly
relevant to sliding motility. In their model, Ward and King [120] treated
a bacterial biofilm as a multi-phase mixture of cells and water, and used
the thin-film approximation to derive a model for the early-time spread of
the colony. The key step was assuming no stress on the biofilm–substratum
interface. This is as opposed to the no-slip condition, which is used to derive
the generalised lubrication equation (1.16). Under the no-stress assumption,
the leading-order fluid velocity is independent of vertical position z, and
therefore the flow is termed extensional. In one dimension, the extensional
model of Ward and King [120] consisted of two coupled partial differential
equations,

∂h

∂t
+ u

∂h

∂x
= f(h), (1.17a)

h
∂u

∂x
= f(h), (1.17b)

where h is the biofilm height, u is the fluid velocity, and f(h) is a function
representing biomass production.

Although the model of Ward and King [120] is relevant to sliding motility,
they considered a biofilm immersed in a nutrient-rich liquid culture medium.
This is unlike S. cerevisiae mats, which receive nutrients from the agar
substratum; their ability to spread therefore depends on the supply of a
depleting nutrient, which is also relevant to biofilm growth in nature or
in a human host [13]. Ward and King [120] also only considered early
biofilm development, and thus neglected ECM production and spatio-temporal
variations in the cell volume fraction. Both of these become important on the
length and time scales of our experiments. Furthermore, multi-phase fluid
models have also only previously been applied to bacterial biofilms, rather
than the yeast biofilms considered here. Based on these considerations, we
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aim to extend previous thin-film models to model S. cerevisiae mat formation
experiments.

1.3 Thesis Objectives and Structure
Our literature review has illuminated the need for new models of yeast mat
formation, and more detailed quantitative comparison between modelling
and experiments. Our objective is to determine the extent to which nutrient-
limited growth and sliding motility can explain yeast biofilm growth. We
can measure this growth by quantifying the speed of biofilm expansion, and
the transition from circular to floral morphology. We will then undertake
mathematical modelling to investigate which mechanisms drive the observed
behaviour. To achieve this objective, we define the following goals for this
thesis:

1. Develop and apply spatial statistical methods to quantify the expansion
speed of S. cerevisiae mat biofilms, and the transition from circular to
floral morphology.

2. Use a reaction–diffusion system as a minimal model for biofilm expan-
sion. Analyse the model and perform a quantitative comparison with
experiments to investigate whether nutrient-limited growth can explain
the floral morphology.

3. Develop a general multi-phase fluid model for S. cerevisiae mat for-
mation. This model will incorporate the mechanics of the cells and
extracellular fluid, and nutrient limitation. Use the thin-film approxi-
mation to derive two simplified models. First, consider biofilm growth
by sliding motility, and then expansion driven by surface tension and
strong biofilm–substratum adhesion.

4. Compare solutions to the thin-film extensional flow model with experi-
ments, to determine the extent to which sliding motility can explain
yeast biofilm expansion.
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5. Use the thin-film model in the lubrication regime to investigate quali-
tative differences between sliding motility and expansion under strong
biofilm–substratum adhesion and comparatively large surface tension
and pressure.

A key part of this thesis is to compare our new mathematical models
with experimental data for yeast biofilms. In Chapter 2, we develop the
quantitative methods used to achieve this. We first describe the method
used to grow yeast biofilms in vitro, and collect data in the form of a time
series of images of biofilm growth. Converting these photographs to binary
images then enables us to apply spatial statistics to quantify the growth. To
quantify pattern formation, it is important to measure expansion speed and
petal formation. The remainder of the chapter thus involves introducing the
radial statistic used the measure biofilm size, and the angular pair-correlation
statistic used to quantify the number of petals. To conclude the chapter,
we apply these spatial statistics to the yeast biofilm photographs, yielding
experimental data that is used throughout the thesis.

We focus on the second objective of our thesis in Chapter 3. Therein, we
use a reaction–diffusion system with non-linear cell diffusion to investigate
pattern formation due to nutrient-limited growth alone. Our analysis of the
model begins by constructing travelling wave solutions. We first prove that
travelling wave solutions exist in one-dimensional planar geometry, in the
limit of zero cell diffusivity. Then, we apply geometric singular perturbation
theory to investigate the structure of travelling wave solutions with small
cell diffusivity. Experimental data for the expansion speed enables us to
estimate the cell diffusion coefficient. We then investigate whether the model
predicts two-dimensional pattern formation. Comparison of petal width
predictions from a linear stability analysis and experimental data show that
nutrient-limited growth is a possible mechanism for floral pattern formation.
Numerical solutions confirm that this holds in a circular geometry.

The remainder of the thesis is devoted to the derivation and analysis
of a multi-phase fluid model for biofilm growth. We derive the model in
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Chapter 4, beginning with a description of mass and momentum conservation.
We then apply the thin-film approximation, and derive distinct models for
biofilm expansion in the extensional flow and lubrication regimes. The
extensional flow model involves weak adhesion between the biofilm and
substratum. This is suitable for modelling biofilm expansion by sliding
motility. In contrast, we consider strong adhesion in the lubrication regime,
where we assume that surface tension and pressure can be large. In both
regimes, we identify appropriate distinguished limits to balance physical
effects such as the transport, uptake, and consumption of nutrients, and cell
proliferation.

We analyse the extensional flow model in Chapter 5, to investigate whether
sliding motility can explain yeast biofilm expansion. We first consider the
one-dimensional axisymmetric form of the model, which enables us to compare
expansion speed with experiments. Fitting numerical solutions to experimen-
tal data, we obtain excellent agreement with O(1) parameters estimated from
experiments. This establishes sliding motility as a possible explanation for the
experimental expansion speed. We conclude the chapter by performing a local
sensitivity analysis to investigate the effect of deviations from experimental
parameters on biofilm size and shape.

We contrast the results for the extensional flow model by performing a
similar analysis in the lubrication regime in Chapter 6. This investigates
biofilm expansion when there is strong biofilm–substratum adhesion and
comparatively large surface tension and pressure. Unlike the extensional
flow regime, the fluid velocities and cell volume fraction depend on z, and
therefore the axisymmetric model remains two-dimensional. We propose
initial and boundary conditions, and regularise the model, which enables us to
undertake numerical solution of the two-dimensional model. These solutions
show that the cell volume fraction depends weakly on z. We exploit this by
considering a simplification whereby the cell volume fraction is independent of
z, which reduces the model to one dimension. We then investigate the effect
of parameters on expansion speed and biofilm thickness. These results are
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qualitatively similar to the extensional flow regime, with the key difference
that the surface tension coefficient becomes a determinant of expansion speed.

Finally, in Chapter 7, we summarise and conclude the thesis. This
combines insights from the reaction–diffusion and mechanical models to
obtain a more complete description of biofilm growth. The minimal reaction–
diffusion model is amenable to travelling wave and stability analysis, enabling
us to predict the floral pattern. The mechanical model captures interactions
between cells, extracellular fluid, and nutrients, providing a more detailed
explanation of expansion speed than the reaction–diffusion model. Using
the mechanical models to investigate floral pattern formation and alternative
expansion mechanisms is the subject of future work.

This thesis contains material that has been published in peer-reviewed
journals, and full citation of these works appears below.
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Chapter 2

Quantifying Yeast Biofilm Growth

Our objective is to quantify the extent to which different mechanisms, such
as nutrient-limited growth and sliding motility, contribute to yeast biofilm
pattern formation. To test each of these hypotheses, we require experimental
data with which to compare predictions from mathematical modelling. We
describe how we obtain this data in this chapter. In §2.1, we provide details
of the experimental method used to grow yeast biofilms in the laboratory.
The raw data collected in these experiments consist of a time series of
photographs as the biofilms develop. To quantify the growth, we first process
the photographs by converting them to binary images that capture the area
occupied by the biofilm. We then define and implement a series of spatial
statistics, enabling us to quantify the speed of biofilm expansion, and the
transition from circular to floral morphology. This process is described in
§2.2. Finally, in §2.3 we obtain and present data from repeated mat formation
experiments. This facilitates comparison with the mathematical modelling in
subsequent chapters.

2.1 Mat Formation Experiments
In this work, we refer to repeated mat formation experiments performed by
Ee Lin Tek at the Department of Wine and Food Science at the University of

29



Chapter 2. Quantifying Yeast Biofilm Growth

Adelaide. The yeast biofilm growth experiments involved producing two mat
assays of the S. cerevisiae wine yeast strain L2056, which yielded a total of
thirteen mats. For each mat preparation, a 90 mm diameter Petri dish was
filled with 25 g Yeast Peptone Dextrose (YPD), and solidified with low-density
(0.3%) agar. This ensured a uniform initial concentration of nutrients in the
dish. The YPD consisted of 95% double-distilled water, 2% Bacto peptone,
1% yeast extract, and 2% glucose, providing a complete medium for yeast
growth. In each experiment, the centre of the dish was inoculated with a
small droplet containing approximately 5000 yeast cells and fluid using a
pipette. The fluid then rapidly absorbed into the medium, leaving behind a
thin layer of cells on the surface. Following this, each plate was incubated at
25 ◦C, allowing the yeast to initiate biofilm formation.

The raw data collected from these experiments consisted of a series of
images taken on the third, fifth, seventh, and tenth day of growth (approx-
imately 68, 117, 164, and 237 hours after incubation respectively). These
photographs were taken from directly above the centre of the dish using the
ProtoCOL 3 (Synbiosis, Cambridge UK) system. They therefore enable us
to track the two-dimensional evolution of the biofilm. The mat formation
experiment was considered to have concluded after taking the fourth photo-
graph. Immediately following this, the total number of cells was estimated
by washing the mat from the medium, and counting the number of cells in
a small sample of the washed material. Since the cell count destroyed the
biofilm, we could only do this at the end of the experiment.

Like the experiments of Reynolds and Fink [17], each mat formed a
similar, reproducible structure. To illustrate this, Figure 2.1 shows an example
series of photographs, while the remainder are presented in Appendix A.1.
Initially, the cells formed a thin round mat with approximately circular
shape, as observed in Figure 2.1a. After growing in this manner for several
days, the mat underwent a transition to a spatially non-uniform complex
structure, characterised by the formation of petals. Development of this floral
morphology, which became more noticeable over time, is shown in Figures 2.1b–
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(a) 68 h (b) 117 h (c) 164 h (d) 237 h

Figure 2.1: A time series of images for a S. cerevisiae mat formation experi-
ment [44]. Captions indicate time after incubation at which each photograph
was taken.

2.1d. Since we observed the floral morphology in other experiments (see
Appendix A.1), we expect it to originate from common mechanisms. To
facilitate comparison between experiments and mathematical models for
candidate mechanisms, we quantify the expansion speed and petal formation.

2.2 Image Processing and Spatial Statis-
tics

Quantifying expansion speed and petal formation requires a method of tracking
the area occupied by yeast cells over time. The first step in this process is
to convert the experimental photographs to binary images. We then develop
spatial statistics and apply them to this data. We use a radial metric to
determine the biofilm radius at a given time, which enables us to quantify
speed of expansion. For the transition to floral patterning, we compute an
angular pair-correlation function, the power spectrum of which gives a count
of the number of petals.

Converting a photograph to a binary image assigns the value zero or one
to each pixel in the photograph, depending on whether the pixel is occupied
by the biofilm. The pixels in each photograph define a two-dimensional square
domain D, consisting of an integer lattice with unit spacing. At each lattice
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site (x, y) ∈ D, we use the method of Binder et al. [11] and define the function

M(x, y) =


0 if site (x, y) is vacant,

1 if site (x, y) is occupied.
(2.1)

For each image, computing (2.1) involves applying a thresholding algorithm
to determine whether a pixel is occupied. First, we apply the imbinarize

Matlab function to each photograph, which uses Otsu’s method [133] to
convert them to binary images. This identifies light coloured pixels, which
include the mat and often the edge of the Petri dish. To isolate the mat, if
necessary we manually edit the images to prevent the biofilm overlapping with
the edge of the Petri dish. We then use the regionprops Matlab function
to isolate the mat and remove the dish from the image. The result is a binary
image that describes the locations of yeast cells only.

The regionprops function also enables us to compute the centroid of the
binary image, which we denote as (x̄, ȳ) . The centroid definition enables us
to calculate several important quantities. First, it is convenient to write the
lattice site locations (x, y) in terms of the position vectors

r(x, y) = (x− x̄, y − ȳ) , (2.2)

from which we can define the set of position vectors for occupied sites,

P = {r (x, y) |M(x, y) = 1, (x, y) ∈ D}. (2.3)

This allows us to define the inner and outer radii of the biofilm as

Ri = min
r/∈P
|r|, and Ro = max

r∈P
|r|. (2.4)

The inner radius, Ri, is the minimum distance from the centroid at which
we find an unoccupied pixel, whereas the outer radius Ro is the maximum
distance from the centroid at which we find an occupied pixel. The annular
region bounded by concentric circles with these radii is where we expect to
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see the floral pattern. Finally, we define the mean field density

% = Ns

πR2
o

, (2.5)

where
Ns = |P| =

∑
x,y

M(x, y) (2.6)

is the number of occupied pixels in the binary image. These quantities
become important when implementing the spatial statistics to quantify pattern
formation.

To illustrate the process of creating a binary image, we consider the
photograph in Figure 2.1d as an example. The ProtoCOL 3 system used to

(a) An experimental mat photograph,
taken 237 h after incubation.
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(b) The corresponding binary image.
The asterisk denotes the centroid (x̄, ȳ) .

Figure 2.2: An experimental photograph and corresponding binary image.

take the photographs consists of a 1.4 megapixel camera, yielding a photograph
with 1040×1040 pixel resolution (Figure 2.2a). After manually distinguishing
the mat boundary from the Petri dish and applying Otsu’s method, the
resulting binary image is shown in Figure 2.2b. This image consists of
Ns = 242033 occupied lattice sites, shown in white in Figure 2.2b. Using
regionprops, we also find that the mat centroid is located at (x̄, ȳ) =
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(515.77, 523.44), as indicated by the asterisk in Figure 2.2b. As the camera
position in the ProtoCOL 3 system is fixed, we use the fact that the inner
diameter of the Petri dish is 83 mm to find that the width of one pixel
represents approximately 0.14 mm. Having generated this binary image, the
next step is to implement the spatial statistics.

2.2.1 Radial Statistic
For each binary image, we use the radial statistic of Binder et al. [11] to
quantify the biofilm size. The radial statistic is a scaled count of the number
of occupied sites at a given radial distance from the centroid. To construct it,
we partition [0, Ro] into L equispaced intervals. We then classify the position
vectors of occupied sites according to their magnitude, by defining the subsets

Sr(i) = {r | ∆r(i− 1) ≤ |r| < ∆ri, r ∈ P} , (2.7)

for ∆r = Ro/L, and i = 1, . . . , L. The subsets (2.7) are defined such that
Sr(i) ⊂ P for each i = 1, . . . , L, and Sr(1) ∪ · · · ∪ Sr(L) = P . The number
of elements |Sr(i)| in each subset gives a count of the number of occupied
sites in the annular region where ∆r(i− 1) ≤ |r| < ∆ri. To obtain the radial
statistic, we normalise these counts with respect to the expected number of
occupied sites if the annular domain was populated uniformly at random.
This reference value is the product of the annulus area π∆2

r (2i− 1) , and the
mean field density %. The radial statistic is then

Fr(i) = |Sr(i)|
π%∆2

r(2i− 1) . (2.8)

As an example computation of the radial statistic (2.8), we consider the
processed image in Figure 2.2. For this image, Ri = 254.97 and Ro = 292.48,
from which can compute % = 0.901. We then compute the radial statistic
(2.8), using ∆r = 1 and L = 293. This gives the result shown in Figure 2.3.
We observe that for r < Ri, where all sites in the binary image are occupied,
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(a) The binary image.
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(b) The radial statistic.

Figure 2.3: A plot of the binary image and radial statistic (2.8) for the
yeast biofilm in Figure 2.2. The inner radius Ri = 252.97, and outer radius
Ro = 292.48 are indicated by the solid and dashed lines respectively in the
binary image.

the radial statistic oscillates about the value Fr = 1/%. Larger oscillations
appear close to r = 0, as the corresponding annuli occupy smaller areas,
and are therefore more prone to errors caused by assigning square pixels
to annular domains. However, these errors are unimportant, because we
are most interested in the leading edge, which indicates biofilm size. The
annulus Ri < r < Ro corresponds to the transition from the inner region
where all sites are occupied, to the region outside the biofilm where no cells
are present. Accordingly, Figure 2.3b shows that the radial statistic decreases
from approximately Fr(Ri) = 1/%, to Fr(Ro) = 0. For all r > Ro, the radial
statistic takes the value Fr = 0, as this region contains no occupied pixels.

We would like to use information provided by the radial statistic to
measure the speed of biofilm expansion. For each image, it is advantageous
to define the median radius,

Rm = min
r∈[Ri,Ro]

{
r
∣∣∣∣ Fr(r) ≤ 1

2%

}
. (2.9)

This is illustrated in Figure 2.4b. As the median radius corresponds to the
minimum radius at which less than or equal to half of the pixels are occupied,
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Figure 2.4: A plot of the binary image and radial statistic (2.8) for the yeast
biofilm in Figure 2.2. The median radius Ri = 276.50, is indicated by the
dashed lines.

it provides a useful single measure of the biofilm size. We use this median
radius when providing experimental results in §2.3, and subsequently in
Chapters 3 and 5 when comparing mathematical models with experiments.

2.2.2 Angular Pair-Correlation Function
Quantifying the transition to floral morphology requires understanding the
angular position of an occupied sites relative to others. The angular pair-
correlation function (APCF) introduced by Binder et al. [11] provides a way
to do this. To isolate the floral pattern, we consider the annular region Ri ≤
|r| ≤ Ro, which contains both occupied and unoccupied sites. Computing
the APCF requires considering all possible pairs of pixels in this region, and
is therefore computationally expensive. We therefore restrict attention to a
random subset of these sites, and define

Pθ = {rj | Ri ≤ |rj| ≤ Ro, rj ∈ P , j = 1, . . . ,M}, (2.10)

where M is the number of sampled points. The APCF is then a scaled count
of the acute angles between all possible pairs of position vectors (ri, rj) ,
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where ri, rj ∈ Pθ. To construct it, we modify the approach of Binder et al.
[11], and instead partition the interval [0, π] into N − 1 interior bins of width
∆θ = π/N, and two bins of width ∆θ/2 at either end. The mid points of each
bin then represent N+1 equispaced data points at θj = j∆θ, for j = 0, . . . , N.
If we let the partition midpoints be θmj = (θj+1 + θj)/2, for j = 0, . . . , N − 1,
We can define the subsets for the angles between pairs of position vectors,

Sθ (θ0) =
{

(r1, r2)
∣∣∣∣ 0 ≤ arccos

(
r1 · r2

|r1||r2|

)
< θm0 , r1, r2 ∈ Pθ

}
, (2.11a)

Sθ (θk) =
{

(r1, r2)
∣∣∣∣ θmk−1 ≤ arccos

(
r1 · r2

|r1||r2|

)
< θmk , r1, r2 ∈ Pθ

}
, (2.11b)

Sθ (θN) =
{

(r1, r2)
∣∣∣∣ θmN−1 ≤ arccos

(
r1 · r2

|r1||r2|

)
< π, r1, r2 ∈ Pθ

}
, (2.11c)

for k = 1, . . . , N − 1, and we compute angles using the pdist function in
Matlab. In a similar way to the radial statistic, when constructing the APCF
we normalise the number of elements |Sθ (θj)| in each subset by the number
of elements expected if the domain was populated uniformly at random. As
there are M(M − 1)/2 possible pair combinations, the APCF is given by

Fθ (θj) = 2Ncj |Sθ (θj)|
M(M − 1) , (2.12)

where cj = 2 for j = 0, N, and cj = 1 otherwise.

Values of Fθ (θj) greater than unity indicate that the likelihood of finding
two pixels separated by an angle θ in the range θj−1 ≤ θ ≤ θj exceeds what
would be expected if the domain was populated uniformly at random. Local
maxima of the function Fθ (θj) therefore indicate regions of cell aggregation,
whilst local minima indicate regions of cell segregation. We illustrate this
using the yeast biofilm in Figure 2.2. The APCF in Figure 2.5b shows that
at the biofilm edge, there are alternating regions of cell aggregation and
segregation. Localised regions of cell aggregation surrounded by adjacent
regions of segregation correspond to the petals of the floral morphology. To
quantify the number of petals, we follow Binder and Simpson [134] and
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Figure 2.5: The sampled binary image and computed angular pair-correlation
function for the yeast biofilm in Figure 2.2. We use M = 25000 samples, and
sampled pixels are indicated in black.

compute the spectrum of Fθ. As we are only interested in the even periodic
extension of Fθ, this involves taking the discrete cosine transform,

f̂k = 2
Nck

N∑
j=0

Fθ (θj)
cj

cos (kθj) , k = 0, . . . , N. (2.13)

The power spectrum f̂ 2
k indicates the relative contribution of a floral pattern

with k petals to the overall pattern. Therefore, the value of f̂ 2
k indicates

whether it is reasonable to conclude that the mat contains k petals. To
illustrate this, we consider the mat in Figure 2.5, and plot the power spectrum
in Figure 2.6. The power spectrum has the dominant mode of k = 8, suggesting
that it is reasonable to conclude that this biofilm contains eight petals. As
the power spectrum also contains peaks for other modes, some qualitative
judgement is required when considering the total number of petals. However,
the method provides quantitative justification that the floral morphology
develops before the end of the experiment.
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Figure 2.6: The binary image and angular pair-correlation function power
spectrum for the mat in Figure 2.2a.

2.3 Experimental Results
We use the spatial statistics defined in §2.2 to obtain experimental results
that we can compare with mathematical models. Our first objective is to
measure the experimental speed of expansion. This involves using the radial
statistic to compute the median radius Rm in each photograph. We first
apply the scale factor 1 pixel = 0.14 mm to convert the median radius to a
physical distance. Then, we estimate the expansion speed using the mean
biofilm size at the four times for which we have photographs. These results
are presented in Figure 2.7. Therein, the dots represent mean data from the
thirteen experiments, and the error bars indicate the maximum and minimum
sizes observed across the experiments. Raw data used to obtain this plot are
presented in Table A.1 in Appendix A.2.

We compute a linear least-squares fit to interpret the experimental data.
Since the line of best fit (the dashed curve in Figure 2.7) passes within the
experimental range at each data point, we initially adopt the assumption
that the biofilm expands radially at a constant speed. This is the simplest
assumption that is consistent with our collected data. The slope of the graph,
2.55× 10−3 mm ·min−1, then provides a single estimate of biofilm expansion
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Figure 2.7: The median radius, Rm, scaled to mm, for all experimental
photographs. The dots represent the mean size at a particular time, and error
bars indicate the range observed over the thirteen experiments. The dashed
line is a linear best-fit to the data, and has the slope 2.55× 10−3 mm ·min−1.

speed. Mathematically, the assumption of a single, constant expansion speed
is advantageous for the travelling wave analysis presented in §3.2. Under
this assumption, to account for biological variation, we use the raw data
in Table A.1 to compute the mean expansion speed between all pairs of
consecutive images across all experiments. This analysis gives expansion
speeds that lie between 1.09× 10−3 mm ·min−1 and 4.67× 10−3 mm ·min−1.
We will use this range when comparing the reaction–diffusion model with
experimental data in Chapter 3, and will revisit the assumption of constant
expansion speed when analysing the extensional flow model in Chapter 5.

We can also use the APCF to quantify the transition from circular to floral
morphology observed in experiments. This involves computing the power
spectrum for each experimental image, and these results are provided in full
in Appendix A.3. Although the dominant modes are typically k ∈ {2, 3, 4},
as each mat grows differently, we see a wider range of modes represented
across all experiments. When constructing mathematical models, we seek
to explain the overall behaviour seen across all experiments. Therefore, we
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introduce the function

F̂k
2 = max

j

 f̂ 2
k∑
k f̂

2
k


j

, (2.14)

for j = 1, . . . , 13. This is the maximum value of each power spectrum coefficient
f̂ 2
k , normalised with respect to the other coefficients from the same experiment.

For each biofilm, we consider the power spectrum of images at the end of the
experiment, which provides the longest possible time for the floral pattern to
develop. A plot of F̂k

2 is given in Figure 2.8.
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Figure 2.8: Normalised power spectrum: maximum value across thirteen mat
formation experiments.

When quantifying the number of petals in a mat, the power spectrum
results retain scope for qualitative interpretation. Across the experiments, we
find that there is at least one case where each of the modes k ∈ {2, 3, 4, 5, 8} is
the dominant mode in the power spectrum (see Appendix A.3). Accordingly,
these modes are strongly represented in in Figure 2.8. However, although not
a dominant mode, there is also a noticeable peak for k = 12. We conclude
that it is reasonable to expect a mat to have between k = 2 and k = 12
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petals at the end of the experiment, with k ∈ {2, 3, 4, 5} the most expected
result. This result will be used when comparing the reaction–diffusion model
of Chapter 3 with experiments.

In conjunction with the median radius data, these petal counts enable
us to estimate the characteristic petal width in experiments. When the
photographs were taken at the end of the experiments, the median radius
across all biofilms was in the range Rm ∈ [29.8, 40.3] mm, with a mean of
Rm = 37.45 mm. If we assume that petals develop from a circular biofilm, the
experimental petal width is

wp = 2πRm

k
. (2.15)

If we allow k ∈ [2, 12], the range of possible petal widths is wp ∈ [15.6, 126.6]
mm. We compare this result with a linear stability analysis of the reaction–
diffusion model performed in §3.3.1.

2.4 Summary
We have used spatial statistical methods to quantify yeast biofilm growth.
In an experimental mat formation assay of S. cerevisiae, yeast biofilms
repeatedly adopted a floral morphology. This involved a transition from
initially circular growth, to a spatially non-uniform pattern characterised by
petal-like structures at the edge of the biofilm. As the floral morphology
occurred in repeated experiments, we expect it to originate from common
mechanisms. Our objective is to construct mathematical models for candidate
mechanisms for biofilm growth. Spatial statistics enable us to compare
mathematical model results with experiments in a quantitative way.

A suitable mathematical model needs to capture the speed of biofilm
expansion and petal formation observed in experiments. Our experimental
data consisted of a time series of photographs of biofilm growth, taken from
directly above the colony. We converted these to binary images in Matlab,
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which enabled us to develop spatial statistics to quantify expansion speed
and petal formation. To measure expansion speed, we implemented a radial
statistic, which is a scaled count of pixels occupied by the biofilm at a given
distance from the centroid. We then computed the minimum distance from
the centroid for which the proportion of pixels occupied does not exceed 50%,
and used this as the measure of biofilm size. To quantify petal formation, we
implemented the angular pair-correlation function (APCF). This is a scaled
count of the acute angles between all possible pairs of occupied pixels. Peaks
in the APCF correspond regions of cell aggregation in the biofilm. To obtain
a count of these regions, and hence the number of petals in the biofilm, we
computed the discrete cosine transform of the APCF. With the radial statistic,
this provided a way to measure the characteristic petal width, which we can
compare between experiments and predictions from a mathematical model.

Having introduced the spatial statistics, we then applied them to pho-
tographs from an assay of thirteen yeast mat biofilms. We assumed that
biofilms expand radially at a constant speed, which was the simplest assump-
tion consistent with results for the radial statistic. Using linear least-squares
fitting, we obtained a mean expansion speed of 2.55× 10−3 mm ·min−1, which
lay between the feasible expansion speed range of 1.09× 10−3 mm ·min−1 to
4.67× 10−3 mm ·min−1. As the biofilms expanded, we found that they even-
tually adopted the floral morphology in each experiment. Using the APCF,
we found that mature biofilms typically contained two to five petals, and that
it was possible to observe up to twelve petals.

Our experimental data enables us to compare the two key characteristics
of floral morphology, biofilm size and petal formation, with predictions from
mathematical models. However, the need for non-invasive data collection
methods limits the extent to which quantitative comparison is possible. Ob-
taining potentially useful measurements, for example of the number of cells
and nutrient concentration, would require the biofilm to be destroyed. In
this context, our objective was to perform the first quantitative comparison
between mathematical models and experiments, while acknowledging that
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there remains scope to improvements our data collection methods. For exam-
ple, using a larger number of photographs would provide greater certainty
on whether the constant expansion speed assumption is valid. Other studies
have also obtained three-dimensional measurements of biofilm shape [127],
which is not possible from our experimental images. Having established
that it is possible to obtain meaningful quantitative measurements of colony
morphology, in the future we plan to collaborate with experimental colleagues
to develop new techniques that will enable more extensive data collection.

44



Chapter 3

A Reaction–Diffusion Model for Nutrient-
Limited Yeast Biofilm Growth

In this chapter, we neglect biofilm mechanics, and focus on the hypothesis that
nutrient-limited growth is the mechanism by which biofilms expand and petals
form. To investigate this, we adopt a minimal mathematical model for mat
growth. Our model takes the form of a coupled system of reaction–diffusion
equations, with a non-linear, degenerate diffusion term for the spread of cells.
The simplicity of our model ensures that we are able to estimate the relevant
parameters from yeast mat formation experiments. This enables us to isolate
the extent to which nutrient-limited growth alone is a possible explanation
for the floral morphology.

The chapter is structured as follows. In §3.1, we present our minimal
reaction–diffusion model for nutrient-limited mat formation, and estimate
all parameters except the diffusion ratio from experimental data. In §3.2,
we exploit the assumption that mats expand at a constant radial speed by
constructing one-dimensional travelling wave solutions to our model. We use a
combination of geometric singular perturbation theory and numerics to show
that such solutions exist, and estimate the diffusion ratio using the speed
of mat expansion. In §3.3, we apply the linear stability analysis of Müller
and van Saarloos [64], which shows that two-dimensional planar travelling
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waves are linearly unstable for the experimental range of parameters. We use
this to predict the characteristic petal width, and compute two-dimensional
numerical solutions to verify the analysis. We summarise the results in §3.4.

3.1 Mathematical Model
We use a reaction–diffusion model to investigate the effect of nutrient-limited
growth in a yeast biofilm. Our objective is to analyse a minimal model,
in which mechanical features and complex cellular behaviour are neglected.
As outlined in §1.2.1, reaction–diffusion systems are prototype models that
capture the essential features of nutrient-limited growth. They describe the
spread of cells and nutrient, and consumption of nutrient by the cells, without
requiring complicated descriptions of how these occur. In our context, their
simplicity will enable detailed analysis, and comparison with experimental
data.

Beginning with the general reaction–diffusion system (1.3), we need to
determine appropriate forms of the diffusion and reaction terms. Since yeast
cells are non-motile, they do not undergo standard Fickian diffusion. To
account for this, we adopt the non-linear degenerate diffusion model (1.6) as a
phenomenological description of cell spread. Throughout this work, we analyse
the simplest form of this model, featuring b = 1. The reaction–diffusion model
under consideration is then

∂n

∂t
= Dn∇ · (n∇n) + χng, (3.1a)

∂g

∂t
= Dg∇2g − σχng, (3.1b)

where Dn and Dg are constants. An advantage of the system (3.1) is that it
admits compactly supported solutions whereby cell density is only non-zero
in a finite envelope [64]. It is therefore more suitable for modelling finite-sized
experimental biofilms than linear diffusion models.
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3.1.1 Scaling and Non-Dimensionalisation
We begin the analysis by writing the reaction–diffusion system (3.1) in
dimensionless form. To achieve this, we introduce the dimensionless variables
denoted by hats,

t̂ = Gχt, x̂i =
√
Gχ

Dg

xi, n̂(x̂, t̂) = n(x, t)
N

, ĝ(x̂, t̂) = g(x, t)
G

, (3.2)

where N is the measured mean final cell density, and G is the initial glucose
concentration. In terms of these new dimensionless variables (3.2), the
model (3.1) becomes (dropping hats)

∂n

∂t
= D∇ · (n∇n) + ng, (3.3a)

∂g

∂t
= ∇2g − σ∗ng. (3.3b)

In writing (3.3), we have introduced the dimensionless parameters

D = NDn

Dg

, and σ∗ = σN

G
, (3.4)

where D is the ratio of cell to nutrient diffusivities, and σ∗ is the dimensionless
nutrient consumption rate.

3.1.2 Parameters
Estimating the dimensional parameters in (3.2) enables us to quantify the
length and time scales. We use the empirical relationship of Slade, Cremers,
and Thomas [135],

Dg

D0
= 1− 0.023wa, (3.5)

to estimate the diffusivity of glucose in agar, Dg. In (3.5), the reference value
D0 = 4.04× 10−2 mm2 ·min−1 is the diffusivity of glucose in water [136],
and wa is the weight percentage of the agar. We used 0.3% agar in each
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experiment, which gives the estimate

Dg = 4.01× 10−2 mm2 ·min−1. (3.6)

In our scaling, we use the initial concentration as the reference glucose
concentration, G. The initial mass of glucose added to each plate was 0.5 g,
and the agar medium occupied a circular area with diameter of approximately
83 mm. From this, we determine that the initial concentration of glucose in
each experiment was

G = 9.24× 10−5 g ·mm−2. (3.7)

Since we could only measure the cell density at the end of the experiment,
we use this single measurement as the reference cell density, N. Using the
method described in §2.1, we obtained a mean of 1.46× 1010 cells per mat.
By analysing processed images in Matlab, we found the mean mat area to
be 4.46× 103 mm2 at the conclusion of the experiment. The mean reference
cell density from the experiments was therefore

N = 3.34× 106 cells ·mm−2. (3.8)

Table A.2 in Appendix A.2 contains the raw data used to derive this result.

To estimate σ, we assume that all of the consumed glucose is used for the
creation of new cells, giving the dimensionless parameter σ∗ = 1. We also
assume that all of the glucose is consumed by the end of the experiment,
which gives the estimate

σ = G

N
= 2.77× 10−11 g · cell−1, (3.9)

for the quantity of glucose consumed per new cell.

The cell proliferation rate, χ, cannot be measured directly, and is the most
difficult parameter to estimate. To obtain an order of magnitude estimate, we
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isolate χ by considering the dimensional model in the absence of diffusion,

∂n

∂t
= χng, (3.10a)

∂g

∂t
= −σχng. (3.10b)

Multiplying equation (3.10a) by the constant σ, adding the result to (3.10b),
and integrating once with respect to t, yields σn + g = σN0 + G, where
N0 = n(0) is the initial cell density. Hence, we can rewrite (3.10a) as

∂n

∂t
= χn(σN0 +G− σn). (3.11)

Equation (3.11) is a first-order, non-linear, Bernoulli ordinary differential
equation, which has the solution

n(t) = N0(σN0 +G)eχt(σN0+G)

σN0eχt(σN0+G) +G
. (3.12)

In each experiment, we placed 5000 cells on the Petri dish, concentrated in
circular regions with a mean diameter of 5.75 mm. We therefore estimate
the initial cell density to be N0 = 144.5 cells ·mm−2. The final cell density,
n(t), is the mean cell density at the end of the experiment, N. We can then
estimate the cell proliferation rate by rearranging (3.12) to give

χ = N

14208G(N0 +N) log
(
N2

N2
0

)
. (3.13)

Using the experimental parameters already determined, we obtain

χ = 15.28 mm2 · g−1 ·min−1. (3.14)

Parameter estimation for the reaction–diffusion model is now complete, and
we present a summary of these parameters in Table 3.1.

According to (3.2), knowledge of Dg, G, and χ enables us to compute the
dimensionless length and time scales for the experiments. The time scale is
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Table 3.1: Experimental estimates for the dimensional parameters used in
the reaction–diffusion model.

Parameter Value Units Source

Dg 4.01× 10−2 mm2 ·min−1 [135], [136]
G 9.24× 10−5 g ·mm−2 Experimental design
N 3.34× 106 cells ·mm−2 Mat images
χ 15.28 mm2 · g−1 ·min−1 Experimental data
σ 2.77× 10−11 g · cell−1 Assumption

t̂ = (1.412× 10−3)t, for t in minutes. As we grew the biofilms for 14 208 min,
the end of the experiment corresponds to a dimensionless time of t̂ = 20.1.
We can then calculate the expansion speed using the dimensionless length
scale, which is x̂ = 0.1933x, for x given in millimetres. In §2.3, we found
a mean expansion speed of 2.55× 10−3 mm ·min−1, which corresponds to a
dimensionless speed of c = 0.348. Across all experiments, we observed speeds
between 1.09× 10−3 mm ·min−1 and 4.67× 10−3 mm ·min−1, which gives a
feasible range of dimensionless speeds of c ∈ [0.150, 0.639]. The length scale
also enables us to find the dimensionless petal width. Using data in §2.3, the
median radius across all biofilms lies in the range x̂ ∈ [5.71, 7.54], with a mean
of x̂ = 7.02. The dimensionless range of petal widths is then ŵp ∈ [2.99, 23.68].

So far, we have not yet estimated the diffusivity ratio, D. This parameter
is also difficult to estimate, because it cannot be measured in experiments.
However, previous reaction–diffusion models have found a one-to-one rela-
tionship between the speed of travelling wave solutions and D [70]. If such a
relationship exists for the model (3.3), we can use experimental measurements
of expansion speed to infer D. We undertake a travelling wave analysis to
investigate this possibility.
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3.2 Travelling Wave Analysis

Many living things, from micro-organisms to complex multi-cellular organisms,
have the ability to grow in size while maintaining their shape [82]. Travelling
waves are solutions that advance at a constant speed while retaining their
shape, and therefore provide a possible explanation for this phenomenon.
Constructing travelling wave solutions is a common technique in the analysis
of reaction–diffusion models. We seek a travelling wave solution to (3.3),
which we can then relate to the expansion speed of yeast biofilms.

In the non-dimensionalisation (3.2), our choice of length scale implicitly
assumes Cartesian geometry. When constructing the travelling wave solution,
we consider the one-dimensional planar form of (3.3), which gives

∂n

∂t
= D

∂

∂x

(
n
∂n

∂x

)
+ ng, (3.15a)

∂g

∂t
= ∂2g

∂x2 − ng. (3.15b)

However, yeast biofilm growth is initially circular, for which the equivalent
one-dimensional formulation is

∂n

∂t
= D

[
∂

∂r

(
n
∂n

∂r

)
+ n

r

∂n

∂r

]
+ ng, (3.16a)

∂g

∂t
= ∂2g

∂r2 + 1
r

∂g

∂r
− ng. (3.16b)

Due to the terms involving 1/r, it is not possible to construct travelling wave
solutions to (3.16). However, for large r the contribution of these terms
is negligible compared to the higher derivative terms, and in the limit as
r → ∞, (3.16) approaches (3.15). Therefore, the solution to (3.16) will
tend asymptotically to the travelling wave solution to (3.15) as r → ∞
[6]. Our analysis therefore focuses on travelling wave solutions to (3.15),
which we subsequently apply to our yeast biofilm experiments. A similar
planar assumption was performed by Gallegos, Mazzag, and Mogilner [80] in
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a model for swarming myxobacteria. As it is possible to fit a straight line
to experimental data for biofilm size (see Figure 2.7), we expect the planar
approximation to be valid on the length scale of our experiments.

Constructing a travelling wave solution involves introducing a variable
that moves with the wave front. Without loss of generality, we can assume
that the travelling waves advance rightward, and make the ansatz

z = x− ct, (3.17)

where c ∈ R+ is the constant wave speed. Introducing the travelling wave
co-ordinate (3.17) enables us to reduce (3.15) to the ordinary differential
equations

D
d
dz

(
n

dn
dz

)
+ c

dn
dz + ng = 0, (3.18a)

d2g

dz2 + c
dg
dz − ng = 0. (3.18b)

We now seek to solve (3.18) on the entire real line z ∈ (−∞,∞), subject to
four boundary conditions that depend on limiting behaviour in both space
and time.

We obtain two boundary conditions by considering z → −∞, which corre-
sponds to behaviour far behind the travelling wave, or long-time behaviour
as t→∞. There, we expect to see a colony consisting entirely of cells, with
all nutrients having been consumed. In contrast, the boundary z → ∞
corresponds to the behaviour far ahead of the travelling wave. There, we
expect to see no cells, and the nutrient concentration at its maximum level.
If the cell density far behind the travelling wave is the mean final cell density,
N, we obtain the boundary conditions

lim
z→∞

n(z) = 0, lim
z→−∞

n(z) = 1,

lim
z→∞

g(z) = 1, lim
z→−∞

g(z) = 0,
(3.19)

with all derivatives of n and g with respect to z vanishing as z → ±∞.
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So far, we have introduced the ansatz (3.17) with no guarantee that
travelling wave solutions exist. Establishing the existence of travelling wave
solutions is important, as this indicates whether a yeast colony is able to
expand at a constant speed while maintaining its shape. A travelling wave
solution to (3.15) only exists if it is possible to solve the ordinary differential
equations (3.18) such that the boundary conditions (3.19) are satisfied.

We can make analytical progress by rewriting (3.18) as a system of first-
order ordinary differential equations. If we multiply (3.18a) by σ, and add to
(3.18b), integrate once with respect to z, and apply the boundary conditions
(3.19), we obtain

Hc := Dn
dn
dz + dg

dz + c(n+ g − 1) = 0 (3.20)

This holds for all z ∈ (−∞,∞), so we refer to Hc as a conserved quantity.
To construct the travelling wave solution, it is convenient to introduce the
new variables

u(z) = n
dn
dz , and w(z) = dg

dz , (3.21)

whereby

lim
z→−∞

u(z) = lim
z→∞

u(z) = 0, and lim
z→−∞

w(z) = lim
z→∞

w(z) = 0. (3.22)

Using these variables, we write (3.18) as the four-dimensional dynamical
system

n
dn
dz = u, (3.23a)
dg
dz = w, (3.23b)

D
du
dz = −cu

n
− ng, (3.23c)

dw
dz = ng − cw. (3.23d)

Owing to the conserved quantity (3.20), there is a three-dimensional invariant
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surface on which the dynamics of (3.23) occur. Replacing the variable u, by
rearranging (3.20) and exploiting (3.21), allows us to reduce (3.23) to the
three-dimensional system,

n
dn
dz = 1

D
(c− cn− w − cg) , (3.24a)

dg
dz = w, (3.24b)
dw
dz = ng − cw. (3.24c)

We now use the technique first proposed by Aronson [137] to remove the
singularity as n→ 0 in (3.24a). This involves introducing a new independent
variable, ζ, defined by

dζ
dz = n−1 =⇒ ζ =

∫ z

0
n−1 ds. (3.25)

The three-dimensional system (3.24) then becomes

dn
dζ = 1

D
(c− cn− w − cg) , (3.26a)

dg
dζ = wn, (3.26b)

dw
dζ = n2g − cwn. (3.26c)

Although (3.26) is topologically equivalent to (3.24), it has the advantage
that the derivative in (3.26a) no longer vanishes as n→ 0.

We can use the three-dimensional dynamical system (3.26) to investigate
the existence of travelling wave solutions to the model (3.15). By inspection,
the fixed points of (3.26) are (n, g, w) = (1, 0, 0) and (0, 1, 0). These correspond
to the asymptotic boundary conditions (3.19) as z → −∞ and z → ∞
respectively. A travelling wave solution to the model (3.15) exists if there
is a heteroclinic connection between these two equilibria. Identifying such
connections is the key step in proving the existence of travelling waves.
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3.2.1 Geometric Singular Perturbation Theory
So far, we have demonstrated that constructing travelling wave solutions to
reaction–diffusion equations gives rise to a dynamical system. Geometric
singular perturbation theory (GSPT) is a useful technique for analysing some
dynamical systems that contain a small parameter. This is relevant to yeast
growth, because we anticipate that glucose diffusion will occur much faster
than the spread of yeast cells. As a result, we expect that NDn � Dg, and
therefore 0 < D = ε� 1. Applying this to (3.26), we obtain

ε
dn
dζ = c− cn− w − cg, (3.27a)

dg
dζ = wn, (3.27b)

dw
dζ = n2g − cwn, (3.27c)

The system (3.27) is in the standard form for applying GSPT, and we refer
to it as the slow subsystem.

If we attempt to study the leading-order behaviour of the perturbed system
(3.27) by setting ε = 0, we obtain the regular problem

0 = c− cn− w − cg, (3.28a)
dg
dζ = wn, (3.28b)

dw
dζ = n2g − cwn, (3.28c)

which we refer to as the reduced problem. However, as the slow subsystem (3.27)
is singularly perturbed, the solution to (3.28) is not a valid approximation to
the solution of the full system (3.27). To illustrate this singular nature, we
observe that taking ε = 0 transforms the ordinary differential equation (3.27a)
to the algebraic equation (3.28a). In doing so, we lose important information
about how the fast variable n changes.

Despite this, further progress is possible by recognising that the small
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parameter defines a clear separation of scales, whereby changes in g and w
with respect to ζ occur much slower than changes in n. For this reason, we
refer to g and w as the slow variables, and to n as a fast variable. This
separation of scales is essential to the application of GSPT. If we introduce a
new independent variable γ = ζ/ε, we obtain

dn
dγ = c− cn− w − cg, (3.29a)

dg
dγ = εwn, (3.29b)

dw
dγ = ε

(
n2g − cwn

)
. (3.29c)

which we refer to as the fast subsystem. This system is topologically equivalent
to the slow system (3.27), but if we now examine the leading-order behaviour
by taking ε = 0, we obtain

dn
dγ = c− cn− w − cg, (3.30a)

dg
dγ = 0, (3.30b)

dw
dγ = 0. (3.30c)

This system is different from the reduced problem (3.28), which implies that it
is not possible to approximate the leading-order behaviour of (3.27) and (3.29)
by taking ε = 0. We refer to this second distinct regular problem (3.30) as
the layer problem. When viewed with respect to the fast scale γ, the slow
variables g and w do not change, and instead act as parameters in (3.30). The
layer problem then describes how the fast variable n changes with respect
to the independent variable. This information is missing from the reduced
problem.

According to GSPT, the solutions to the reduced and layer problems
together provide enough information to construct a valid approximation of
the solution to the full perturbed system. The mathematical basis for this
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result was proved by Fenichel [138], and hence GSPT is sometimes referred
to as Fenichel theory. Applying the theory involves introducing the critical
manifold, which is the set

S0 := {(n, g, w) | c− cn− w − cg = 0}. (3.31)

The critical manifold (3.31) links the reduced and layer problems. In the layer
problem (3.30), the plane S0 consists entirely of fixed points, and is the centre
manifold of these equilibria. By (3.30), g and w are constant under the layer
flow, so (3.30a) is a linear ODE in n with a negative coefficient. Solution
trajectories of the layer problem (3.30) are therefore attracted exponentially
quickly to S0, along rays of constant g and w. Viewed from the perspective of
the reduced problem, this layer flow occurs instantaneously. This is because
the critical manifold, S0, also represents the points at which the differential
equations (3.28b) and (3.28c) of the reduced problem are defined. The
reduced problem then describes how flow evolves on the critical manifold.
This demonstrates how the two distinct problems exploit the separation of
scales inherent in singularly perturbed problems.

Fenichel theory enables us to extend this analysis beyond the leading-
order case, to consider ε 6= 0. The theory consists of three main theorems,
and for precise statement and proof of these, we refer to Fenichel’s original
papers [138, 139], or other references on the subject [140, 141]. Here, we
discuss their implications for constructing valid approximate solutions to
singularly perturbed dynamical systems such as (3.27) and (3.29). The
theorems state that if S0 is a normally hyperbolic invariant manifold, then for
ε > 0 but sufficiently small, there exists an invariant smooth slow manifold,
Sε, that lies O(ε) away from S0. Importantly, the fast flow to Sε is a regular
perturbation to the fast flow to S0. This means that concatenating solutions to
the leading-order problems (3.28) and (3.30) provides a good approximation
to the solutions of the full system (either (3.27) or (3.29)) for sufficiently
small ε > 0. This is not possibly by simply setting ε = 0 in either the slow
(3.27) or fast (3.29) subsystems. Thus, Fenichel theory provides a means to
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construct travelling wave solutions to singularly perturbed systems [142].

Reduced Problem

When applying Fenichel theory to our model, we first consider the reduced
problem. Owing to the algebraic constraint (3.28a), the reduced problem
(3.28) simplifies to the two-dimensional system

dg
dζ = w

(
1− w

c
− g

)
, (3.32a)

dw
dζ =

(
1− w

c
− g

)2
g − cw

(
1− w

c
− g

)
. (3.32b)

This demonstrates another advantage of Fenichel theory, that the reduced
and layer problems are both of lower dimension to the full system. We can
simplify (3.32) further using the change of variables

dζ̄
dζ = 1− w

c
− g =⇒ ζ̄ =

∫ ζ

0

(
1− w

c
− g

)
ds, (3.33)

which yields

dg
dζ̄

= w, (3.34a)

dw
dζ̄

=
(

1− w

c
− g

)
g − cw. (3.34b)

A travelling wave solution to the full system (3.27) corresponds to a
heteroclinic connection between (1, 0, 0) and (0, 1, 0). In the two-dimensional
reduced system (3.34), this corresponds to a heteroclinic connection between
(g, w) = (0, 0) and (1, 0), which are the fixed points of (3.34). Linearisation
about these points shows that for any c > 0 the point (0, 0) has a one-
dimensional unstable manifold in the direction (c/2 +

√
c2 + 4/2, 1), and that

(1, 0) is a stable node. Furthermore, a trajectory leaving (0, 0) along the

58



3.2. Travelling Wave Analysis

unstable direction is confined to the forward-invariant triangular region

{(g, w) | 0 ≤ g ≤ 1, 0 ≤ w ≤ c(1− g)}, (3.35)

because flow on the boundaries of this region is never outwards. As (0, 0) and
(1, 0) are the only two equilibria of (3.34), the Poincaré–Bendixson theorem
then guarantees that the equilibrium (1, 0) is the ω-limit set of a trajectory
emanating from (0, 0) [143]. This proves that a heteroclinic connection
between (0, 0) and (1, 0) exists for the system (3.34). Thus, travelling wave
solutions to the full system (3.26) exist for D = 0.

Although flow along the critical manifold always remains in the region
w ≤ c(1− g), we cannot yet confirm the existence of travelling wave solutions
for ε 6= 0. This is because when ε 6= 0 it may be possible for a trajectory of the
full system (3.27) to intersect the (g, w) plane such that w > c(1− g). If this
occurs, then the change of variables (3.33) scales the independent variable
negatively. Therefore, when w > c(1− g), flow of the reduced problem (3.32)
is in the opposite direction to (3.34). Without making the change of variables,
in the reduced problem (3.32), a heteroclinic connection between (0, 0) and
(1, 0) will not exist if the trajectory enters the region w > c(1 − g). The
direction field plot in Figure 3.1 illustrates this. We investigate this further
by studying the layer problem and fast subsystem.

Layer Problem

In the layer problem (3.30), the critical manifold S0 : c − cn − w − cg = 0
consists entirely of fixed points. By (3.30b) and (3.30c), the slow variables
g and w are parameters of the layer problem. Layer flow is then given by
the solution to the ordinary differential equation (3.30a). These solution
trajectories are attracted exponentially quickly to the critical manifold along
rays of constant g and w, as shown in Figure 3.2. We can then concatenate
these solutions with those of the reduced problem (3.32) to construct travelling
waves for ε = 0.
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Figure 3.1: Direction field of the reduced problem (3.32) with the experimental
wave speed c = 0.348 (black arrows). The equilibria, including the line
w = c(1− g) and the point (0, 0) are shown in orange, and the dashed blue
line is a trajectory computed numerically using the fourth-order Runge–Kutta
method.
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Figure 3.2: Two views of example solution trajectories of the layer problem
(3.30). These trajectories are attracted exponentially quickly to the critical
manifold along rays of constant g and w. The critical manifold is shown in
yellow.
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Fenichel theory guarantees that the slow manifold is a regular perturbation
to the critical manifold. Therefore, we can write this surface as

Sε : n = 1− g − w

c
+ εf(g, w) +O(ε2), (3.36)

for some function f. Dynamics of the fast subsystem (3.29) then enable us to
approximate the shape of Sε analytically. Differentiating (3.36) with respect
to the fast variable γ, we obtain

dn
dγ = −dg

dγ −
1
c

dw
dγ + ε

(
∂f

∂g

dg
dγ + ∂f

∂w

dw
dγ

)
+O(ε2). (3.37)

Substituting relevant terms from the fast subsystem (3.29), we obtain

Sε : wε = c(1− n− g) + ε
n2g

c
+O(ε2), (3.38)

which is an asymptotic approximation to the shape of the slow manifold as
ε → 0. As expected, the leading-order approximation to Sε is the critical
manifold S0.

To test the accuracy of (3.38), we integrate the fast subsystem (3.29)
numerically. We do this using a fourth-order Runge–Kutta scheme [144],
with Nγ = 25000 points, and ∆γ = 1. Since there is a one-dimensional
unstable manifold associated with the equilibrium (1, 0, 0), we take our initial
condition to be a small distance from this point in the unstable direction.
After obtaining the numerical solution, we compute

dε(w,wε) =

√√√√Nγ∑
i=1

(w − wε)2
i , (3.39)

which is the L2–norm of the vector of distances between points along the
fast subsystem trajectory (n, g, w)i, and the slow manifold (n, g, wε)i, for
i = 1, . . . , Nγ. We compute this quantity for different values of ε with c ∈
{0.150, 0.348, 0.639}, and plot it in Figure 3.3. The presented results follow
straight lines on the logarithmic scale. Therefore, dε(w,wε) ∼ O(εm) as
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Figure 3.3: A log–log plot of dε(w,wε) for ε ∈ [0.001, 0.1], computed for the
biologically relevant wave speeds c ∈ {0.150, 0.348, 0.639}.

ε→ 0, where m is the slope of the graph. We find that m = 2.06, m = 2.03,
and m = 2.01 for c = 0.150, c = 0.348, and c = 0.639 respectively, which
verifies the slow manifold approximation (3.38). To illustrate this further,
we plot the solution trajectory for c = 0.348 and ε = 0.1 in Figure 3.4. As
predicted, the trajectory closely follows the slow manifold.
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Figure 3.4: Two views of the critical manifold S0 (yellow), and approximate
slow manifold Sε (green), for c = 0.348, and ε = 0.1. The dashed curve is
a trajectory of the numerical solution to the fast subsystem (3.29), and the
equilibria of (3.29) are shown in orange.
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Although this analysis shows that the formula (3.38) is accurate, the slow
manifold approximation breaks down close to n = 0. This is because S0 loses
normal hyperbolicity there, and thus Fenichel theory only applies away from
n = 0. Numerical integration of the full dynamical system (3.27) is required
to determine whether solution trajectories intersect the (g, w) plane such that
w > c(1− g). This is the final step in our travelling wave analysis, and allows
us to investigate travelling waves beyond the small diffusion ratio regime.

3.2.2 Numerical Integration and Sharp-Fronted
Travelling Waves

We explore the existence of biologically relevant travelling waves for D > 0
by integrating the slow subsystem (3.27) numerically. Fixing D, we observe
three qualitative types of behaviour depending on c. For D = 0.47, these
possibilities are illustrated in Figure 3.5, which correspond to the travelling
wave profiles in Figure 3.6. If the wave speed is sufficiently small, for example
c = 0.25 in Figure 3.5a, the trajectory intersects the (g, w) plane such that
w > c(1− g). As the reduced problem direction field predicts, no biologically
relevant travelling wave solution exists in this case. Figure 3.6a, in which we
see negative cell density n(ζ) and nutrient concentration g(ζ), confirms this.
In contrast, for c = 0.5 the trajectory eventually enters (1, 0, 0), giving rise to
the biologically valid travelling wave solution in Figure 3.6c. Between these
two wave speeds, there is a minimum speed for which a biologically relevant
travelling wave solution exists. For D = 0.47, this is c = 0.348, for which the
trajectory of (3.27) reaches an equilibrium in the (g, w) plane along the line
w = c(1− g). The travelling wave solution then has n(ζ) = 0 and g(ζ) 6= 1 in
the far field as ζ →∞, as Figure 3.6b confirms.

For all values of D, we observe the same three types of solution as Fig-
ures 3.5 and 3.6. This suggests that there is a critical minimum wave speed
cmin(D) associated with each D, such that a continuum of biologically relevant
travelling waves exist for c ≥ cmin. However, yeast biofilms have finite size, so
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(c) c = 0.5.

Figure 3.5: Numerical solutions of the full dynamical system (3.26) for
D = 0.47 and different c.
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Figure 3.6: Travelling wave solutions corresponding to Figure 3.5
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a biologically relevant solution needs to have a sharp cell density front in the
original travelling wave co-ordinate z. As Figure 3.6b shows, for c = 0.348,
which is the minimum wave speed for D = 0.47, the solution attains n = 0
with g < 1. By the boundary conditions (3.19), this must occur for z <∞.
However, for c > cmin, the equilibrium corresponding to ζ → ∞ has n = 0
and g = 1, which occurs as z →∞. This suggests that a sharp-fronted profile
only exists when c = cmin. Furthermore, the sharp-fronted profile emerges
and propagates at cmin in numerical solutions to (3.15) with arbitrary initial
conditions. Therefore, we adopt cmin as the experimental expansion speed.

3.3 Comparison with Experiments
We use the analysis of Müller and van Saarloos [64] to compare the reaction–
diffusion model with experimental data. They used a numerical shooting
method to compute sharp-fronted travelling waves that move at the minimum
wave speed cmin. For each diffusion ratio D, they showed that cmin(D) is
unique, and only depends onD. Implementing their shooting method therefore
enables us to determine the effect of the diffusion ratio on the speed of biofilm
expansion. We illustrate this in Figure 3.7.

There is a monotonic relationship between the diffusion ratio and the min-
imum wave speed. Observing the expansion speed in an experiment therefore
enables us to estimate the diffusion ratio. Across all of the experiments, we
found expansion speeds in the range c ∈ [0.150, 0.639]. Using Figure 3.7, the
corresponding range of possible diffusion ratios is D ∈ [0.181, 1.02]. The mean
experimental expansion speed of c = 0.348 gives a diffusion ratio of D = 0.47.
This is our estimate for D, and completes our set of experimental parameters.

By fitting a travelling wave solution to experimental data, we have shown
that the reaction–diffusion model can explain a constant biofilm expansion
speed, which was consistent with S. cerevisiae mat formation experiments.
However, we have not yet accounted for changes in the biofilm shape as it
grows. If our model can explain these, it would provide convincing evidence
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Figure 3.7: The relationship between the diffusion ratio, D, and the minimum
travelling wave speed, cmin.

that non-linear, degenerate cell diffusion is a possible explanation for yeast
biofilm growth. We investigate this by comparing the linear stability analysis
of Müller and van Saarloos [64] with experimental data.

3.3.1 Linear Stability Analysis
In experiments, yeast biofilms undergo a transition from initially circular
growth to the floral morphology, as we show in Figure 2.1. A possible
explanation for this is that a biofilm experiences small deviations in its shape
and cell distribution as new cells grow. Imperfections in the agar will also
cause small non-uniformity in the concentration of nutrients. Non-linear
cell diffusion is a plausible explanation for floral pattern formation if these
small perturbations from uniformity can grow with time, which would enable
the floral morphology to develop without active behaviour from the cells.
Undertaking a linear stability analysis of two-dimensional planar travelling
wave solutions to the model provides a theoretical way of investigating whether
this can occur.

Linear stability analysis of the model equations (3.3) was performed by
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Müller and van Saarloos [64]. As we seek to understand pattern formation in
two-dimensions, we write (3.3) in two-dimensional Cartesian form,

∂n

∂t
= D

∂

∂x

(
n
∂n

∂x

)
+D

∂

∂y

(
n
∂n

∂y

)
+ ng, (3.40a)

∂g

∂t
= ∂2g

∂x2 + ∂2g

∂y2 − ng, (3.40b)

where n = n(x, y, t) and g = g(x, y, t). This introduces the y co-ordinate
normal to the direction of travelling wave propagation, which approximates a
large circular biofilm. To account for small variations in biofilm shape, we
make the change of variables

ξ = x− ct+ δeiqy+ωt, y† = y, t† = t, (3.41)

where 0 < δ � 1 is the small perturbation amplitude, q > 0 is the perturbation
wave number, and ω is the growth rate [69, 72]. The new independent variable,
ξ, follows the perturbed travelling wave front as it advances. We then
investigate the effect of sinusoidal perturbations in the transverse direction
on the cell density and nutrient concentration by expanding the variables as
(dropping daggers on the new variables)

n(ξ, y, t) ∼ n0(ξ) + δn1(ξ)eiqy+ωt +O(δ2), (3.42a)

g(ξ, y, t) ∼ g0(ξ) + δg1(ξ)eiqy+ωt +O(δ2), (3.42b)

as δ → 0 [71, 73]. Upon applying (3.41) and (3.42) to the two-dimensional
model (3.40), at leading-order we obtain the travelling wave equations (3.18)
for n0(ξ) and g0(ξ). Linearising about these travelling wave solutions yields
a spectral problem at O(δ), consisting of the two second-order ordinary
differential equations

D
∂2

∂ξ2 (n0n1) + c
∂n1

∂ξ
+ g0n1 + n0g1 =

(
ω +Dn0q

2
)(

n1 + ∂n0

∂ξ

)
, (3.43a)
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∂2g1

∂ξ2 + c
∂g1

∂ξ
− g0n1 − n0g1 =

(
ω + q2

)(
g1 + ∂g0

∂ξ

)
. (3.43b)

Since the leading-order problem satisfies the boundary conditions (3.19), the
higher-order corrections n1(ξ) and g1(ξ) and their derivatives must decay to
zero as ξ → ±∞. The boundary conditions associated with (3.43) are then

lim
ξ→−∞

n1(ξ) = lim
ξ→∞

n1(ξ) = 0, lim
ξ→−∞

g1(ξ) = lim
ξ→∞

g1(ξ) = 0,

lim
ξ→−∞

∂n1

∂ξ
= lim

ξ→∞

∂n1

∂ξ
= 0, lim

ξ→−∞

∂g1

∂ξ
= lim

ξ→∞

∂g1

∂ξ
= 0.

(3.44)

Müller and van Saarloos [64] use a numerical shooting method to solve
(3.43) and (3.44) for the first-order correction functions n1(ξ) and g1(ξ). In
doing so, they prescribe D and q, and find that the growth rate ω(D, q)
depends uniquely on these parameters. In (3.42), the sign of ω governs the
long-time behaviour of the perturbations, and therefore the linear stability
of the travelling wave solution (n0, g0). If <{ω(q)} > 0, then the travelling
wave solution is linearly unstable to a perturbation with wave number q. An
initially small perturbation of wave number q will grow exponentially, and
result in a visible pattern. Conversely, if <{ω(q)} < 0, the perturbations will
decay exponentially in time, and only the base solution will remain. This
indicates that the travelling wave solution is linearly stable.

Applying the shooting method of Müller and van Saarloos [64] enables us
to compute the dispersion relations ω(D, q) for the experimentally relevant
diffusion ratios, D = 0.181, D = 0.470, and D = 1.02. These results are shown
in Figure 3.8. For each experimentally feasible value of D, there is a range
of wave numbers for which the travelling wave solution is linearly unstable.
The wave number q contains spatial information about the perturbations
that we expect to be unstable. As the perturbations (3.42) are sinusoidal,
the wave number describes the characteristic perturbation width, which is
given by ŵ = 2π/q. The perturbation widths of unstable modes then provides
a prediction of the petal width in yeast biofilm experiments. For example,
we observe instability for q ∈ (0, 0.672) with D = 0.47. The theoretical
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Figure 3.8: Dispersion curves showing the dependence of the growth rate ω
on the wave number q and diffusion ratio D, for three experimentally feasible
values of D.

prediction of petal width is therefore ŵp > 9.35. This overlaps the feasible
experimental range ŵ ∈ [2.99, 23.68], which suggests that the combination
of nutrient-limited cell proliferation and non-linear diffusion is a potential
mechanism for floral pattern formation.

Furthermore, we expect the wave number corresponding to the fastest
growth rate ω to eventually dominate the experimental pattern. The disper-
sion curves of Figure 3.8 therefore allow us to predict the number of petals
in an experimental mat. The most unstable wave numbers for D = 0.181,
D = 0.47, and D = 1.02 are q = 0.420, q = 0.358, and q = 0.232 respectively.
The predicted number of petals is then given by k = qr̂, where r̂ = 7.02
is the mean final radius. For each experimentally feasible value of D, this
gives k = 1.63, k = 2.51, and k = 2.95 respectively. Rounded to the nearest
integer number of petals, the most unstable wave number range corresponds
to k ∈ {2, 3}, which agrees well with the dominant modes of experimental im-
ages (see Figure A.5 in Appendix A.3). However, the linear stability analysis
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presented here is only valid for large mats with negligible curvature, and for
short times after the onset of instability. Previous studies have shown that
curvature can have a significant effect on the wave speed [145, 146]. To inves-
tigate pattern evolution beyond the linear regime, and in finite-sized circular
mats, we compute numerical solutions to the partial differential equations
(3.40).

3.3.2 Two-Dimensional Numerical Solutions
We use a Crank–Nicolson scheme to compute numerical solutions to the
two-dimensional reaction–diffusion model (3.40). At each time step, this
gives rise to a large sparse linear system, which we solve iteratively using
the generalised minimal residual (GMRES) method [147]. Based on a grid
convergence study, we find that a grid spacing of ∆x = ∆y = 0.1, and time
step size of ∆t = 0.001 produces accurate solutions that are independent of
both grid spacing and time step size. We employ these in all of our numerical
solutions. For full details of the numerical scheme and convergence tests, see
Appendix B.1.

We first use numerical solutions to validate the linear stability analysis of
Müller and van Saarloos [64]. In these solutions, we omit O(δ2) terms from
(3.42), prescribe a growth rate q, and use perturbations of the form

n(ξ, y, t) = n0(ξ) + δn1(ξ) cos(qy)eωt, (3.45a)

g(ξ, y, t) = g0(ξ) + δg1(ξ) cos(qy)eωt. (3.45b)

The functions n0(ξ) and g0(ξ) are the travelling wave solutions, and n1(ξ) and
g1(ξ) are the first-order correction functions, both of which we compute using
the numerical shooting method outlined by Müller and van Saarloos [64]. We
then obtain a formula for the numerical growth rate ω by rearranging (3.45a),
to give

ωt = log
[
1 + n(ξ, y, t)− n(ξ, y, 0)

δn1(ξ) cos(qy)

]
. (3.46)
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We obtain the initial condition n(ξ, y, 0) from (3.45a) and the known solu-
tions for n0(ξ) and n1(ξ), and use our iterative Crank–Nicolson scheme to
compute the numerical solution n(x, y, t). The formula (3.46) then enables us
to compute the growth rate ω in numerical results.

We compute the dispersion relation numerically for the mean experimental
value of D = 0.470. To do so, we solve (3.40) numerically, and compute the
quantity (3.46) for t ∈ [0, 100] in increments of ten. We then employ least
squares linear fitting to obtain an estimate for the growth rate ω(D, q), and
repeat this process for five theoretically unstable wave numbers. In each case,
our numerical method reproduces the predicted instability, an example of
which is shown in Figure 3.9. In addition, the growth rate predictions show
good agreement with the theory, as illustrated in Figure 3.10. These results
validate the linear stability analysis of Müller and van Saarloos [64].
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Figure 3.9: Numerical cell density solutions n(x, y, t) to the two-dimensional
reaction–diffusion model (3.40), showing the predicted instability. Solutions
computed using the ansatz (3.45) for the initial condition, and parameter
values D = 0.470, q = 0.3770, and δ = 0.1.

In addition to validating the linear stability analysis for planar fronts,
we are also interested in whether our model captures petal formation in the
circular geometry relevant to yeast colony growth. To investigate this, we
compute solutions using a perturbed circular front as the initial condition.
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(a) Linear regression to calculate
ω from (3.46), for q = 0.3770. The
coefficient of determination is r2 =
0.9958.
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Figure 3.10: Calculation of the growth rate and dispersion relation for D =
0.470, and δ = 0.1.

We impose perturbations of the form

ξr = r − ct+ δfp(θ), (3.47a)

n(ξr, θ, 0) = n0(ξr −R0) + δn1(ξr −R0)fp(θ), (3.47b)

g(ξr, θ, 0) = g0(ξr −R0) + δg1(ξr −R0)fp(θ), (3.47c)

where θ ∈ [0, 2π], R0 is the initial radius of the unperturbed colony, and
correction functions n1 and g1 correspond to the theoretically most unstable
wave number. The perturbation takes the form

fp(θ) =
12∑
k=2

αk cos(kθ), (3.48)

which represents perturbations with k petals of amplitude αk for k = 2, . . . , 12.
We draw each of the coefficients αk randomly from the continuous uniform
distribution U(−1, 1), and then normalise them such that maxθ |fp(θ)| = 1.
This ensures that δ represents the maximum perturbation amplitude. Based
on the experimental length and time scales calculated in §3.1.1, the end of the
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experiment corresponds to a dimensionless time of t̂ = 20.1, at which time
the mean dimensionless mat radius is r̂ = 7.02. To ensure that the numerical
solutions are on an appropriate scale, we initiate the perturbation at R0 = 5
and compute solutions for t ∈ [0, 10]. We then compare these solutions with
experimental results and linear stability analysis predictions.

To determine whether petal formation occurs in the solutions, we use
(2.13) to compute the spectrum f̂k of the angular pair-correlation function
of images of the numerical solutions. For a given number of petals k, we
conclude that the wave number corresponding to k petals is unstable if the
amplitude of f̂ 2

k increases over time. Alternatively, if the amplitude of f̂ 2
k

decreases, we conclude that the relevant mode is stable. To illustrate this
process, we plot the binary images of a numerical solution with D = 0.47, and
the corresponding power spectra for t ∈ {0, 5, 10} in Figures 3.11 and 3.12.

(a) t = 0. (b) t = 5. (c) t = 10.

Figure 3.11: Processed binary images of numerical solutions to (3.40) using
the initial condition (3.47), for D = 0.47, δ = 0.5, and R0 = 5. The mat
centroid is indicated with the red asterisk, and the inner and outer radii are
shown in the solid orange and dashed blue lines respectively.

As Figure 3.12 shows, the magnitude of the power spectrum increases
for the modes k ∈ {2, 3, 4}, and decreases for modes k ≥ 5. Since we impose
random perturbations, we repeat these computations three times for D =
0.181, D = 0.47, and D = 1.02 to ensure that all modes are adequately
represented. The ensembles of random perturbations used are given in full
in Appendix B.1.2. Analysing these repeated solutions, we find that modes
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Figure 3.12: Angular pair-correlation power spectra for the numerical solutions
in Figure 3.11. The magnitude of f̂ 2

k increases for k ∈ {2, 3, 4}, which suggests
that these modes are unstable.
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for k ∈ {2, 3, 4, 5, 6} are unstable for D = 0.181, the modes k ∈ {2, 3, 4} are
unstable forD = 0.47, and the modes k ∈ {2, 3} are unstable forD = 1.02 (see
the power spectra in Figures B.2–B.4 in Appendix B.1.2). Qualitatively, this
agrees well with the dispersion relations computed in Figure 3.8, where there
is a range of unstable modes for all of D = 0.181, D = 0.47, and D = 1.02.
Furthermore, the widest range of unstable modes occurs for D = 0.181, and
the narrowest for D = 1.02, which also agrees with the theoretical results in
Figure 3.8. The results for mean data with D = 0.47 also agree well with the
experimental power spectra in Figure A.5, in which the modes k ∈ {2, 3, 4},
are predominantly represented. This confirms that nutrient-limited growth
with non-linear degenerate cell diffusion is a plausible explanation for the
experimentally observed floral pattern formation in circular geometry.

3.4 Summary
In this chapter, our objective was to determine the extent to which nutrient-
limited growth alone could explain floral pattern formation. To achieve this,
we used a reaction–diffusion system for the numerical cell density and nutrient
concentration as a mathematical model for yeast biofilm growth. The key
feature of the model was a non-linear, degenerate diffusion term for cell spread.
This provided a phenomenological description of finite-sized yeast colonies,
in which cell spread does not obey Fick’s law of diffusion. The simplicity of
the model enabled mathematical analysis of the biofilm expansion speed and
petal formation.

We investigated travelling wave solutions to the model. These are suitable
for biofilms that expand at a constant radial speed, an assumption consistent
with experimental data for S. cerevisiae. Introducing the travelling wave
co-ordinate, we reduced the reaction–diffusion model to a three-dimensional
dynamical system. To construct travelling wave solutions, we first considered
the limit where the cell diffusion was small compared to nutrient diffusion.
This small parameter gave rise to a singularly perturbed, slow–fast dynamical
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system, which we analysed using geometric singular perturbation theory. We
used the reduced problem to show that travelling wave solutions exist for
zero cell diffusion. Analysis of the layer problem then provided numerical
evidence of a slow manifold on which the solutions for small, but non-zero cell
diffusion exist. We completed the investigation by integrating the dynamical
system numerically, which confirmed that there is a one-to-one relationship
between the ratio of diffusion coefficients, D, and the travelling wave speed,
c. We then used experimental data for the expansion speed to infer D, and
obtain a complete set of estimated parameters.

Having estimated the parameters, we next investigated whether the model
could predict floral pattern formation. Linear stability analysis by Müller and
van Saarloos [64] showed that, provided D is not too large, planar travelling
wave solutions are unstable to transverse perturbations with a range of wave
numbers. We found that this instability occurred for all experimentally
feasible values of D. The reaction–diffusion system therefore predicted that
petals would form in an experiment. Furthermore, we found good agreement
between the theoretical range of unstable wave numbers and experimental
measurements of petal width. Based on this evidence, we concluded that
nutrient-limited growth is a possible explanation for petal formation, and that
non-linear, degenerate cell diffusion is appropriate for modelling cell spread.

When interpreting these results, it is important to consider some lim-
itations of our study. Biological variation between experiments can make
parameters difficult to determine accurately. We adopted several assumptions
to obtain estimates. These included assuming that the cell density is constant
at the end of the experiment, and calculating the cell proliferation rate in the
absence of diffusion. Alternative methods, such as using numerical solutions
to fit multiple parameters to experimental data, provide an avenue for future
work.

In our two-dimensional numerical solutions, we initiated a perturbation
at a single radius. In contrast, experimental mats are continually subjected
to small-amplitude perturbations as they grow. Owing to this difficulty,
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our numerical solutions only indicate which of the modes are unstable, and
cannot recreate observed patterns with complete fidelity. Another limitation
is that we performed travelling wave analysis in planar geometry, which is
only valid asymptotically in the limit of large biofilm radius. Investigating
the stability of solutions in radial geometry would provide additional evidence
that nutrient-limited growth can drive petal formation, and is another subject
for future work.

Finally, the minimal reaction–diffusion model does not capture all of the
mechanisms thought to contribute to the floral morphology. Although we do
not need to invoke alternative mechanisms to explain the floral pattern, the
reaction–diffusion model provides a framework onto which we can add more
features. For example, extracellular fluid flow may provide an alternative
means of biofilm expansion as cells proliferate [101, 120]. Investigation of
these mechanical features requires a more complicated modelling approach,
which we undertake in subsequent chapters.
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Chapter 4

Multi-Phase Fluid Modelling of Yeast
Biofilm Growth: Derivation and Thin-
Film Limits

In Chapter 3, we used a minimal model to show that nutrient-limited growth
in the absence of mechanics is a possible explanation for the floral morphology
observed in yeast biofilms. However, this model does not provide a complete
description of biofilm formation, as it neglects the complex mechanical interac-
tions between the cells, extracellular matrix, and environment. Experimental
observations of Reynolds and Fink [17], who hypothesised that yeast biofilms
expand by sliding motility, justify the need to include these features in the
model. We now aim to extend our model for nutrient-limited growth to
include macroscopic mechanical effects, including the flow of extracellular
fluid.

In §4.1, we derive a general mechanical model for yeast biofilm expansion.
Our model treats the biofilm as a two-phase mixture of living cells and
extracellular fluid, both of which we assume to be viscous fluids. Since this
model incorporates mechanics in addition to nutrient limitation, it is more
complex than the reaction–diffusion system considered in Chapter 3. To
obtain two simpler models, we apply the thin-film approximation in both the
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extensional flow (§4.2) and lubrication (§4.3) scaling regimes. The extensional
flow model enables us to test the hypothesis of Reynolds and Fink [17]
that yeast biofilms expand by sliding motility, and the lubrication model
describes growth when there is strong biofilm–substratum adhesion, and large
pressure and surface tension. These simplified models are more amenable to
mathematical analysis and numerical computation than the general model.

4.1 Formulation and Governing Equations
We consider three-dimensional growth of a yeast biofilm on a solid substratum,
and adopt a cylindrical co-ordinate system (r, θ, z). Similar to Howell, Scheid,
and Stone [148], we define the compactly-supported domain

Ω (t) = {(r, θ) | 0 < r < S(θ, t)} (4.1)

to be the projection of the area inhabited by the biofilm onto z = 0. We refer
to S(θ, t), which is the boundary ∂Ω(t) of the domain Ω(t), as the contact
line. The biofilm is bounded below by a rigid substratum of thickness Hs,

and bounded above by a free surface z = h(r, θ, t). Biofilm growth occurs
with characteristic height Hb, and a characteristic radius Rb. A sketch of the
problem domain, which closely resembles that of Ward and King [120], is
shown in Figure 4.1.

We adopt a macroscopic continuum modelling approach, and treat the
biofilm as a mixture of two viscous fluid phases. These comprise a living
cell phase denoted with the subscript n, and an extracellular matrix (ECM)
phase denoted with the subscript m. This ECM incorporates the extracellular
polymeric substances and all extracellular fluid. We define the volume fractions
of living cells and ECM to be φn(r, θ, z, t) and φm(r, θ, z, t) respectively, and
assume that the fluid mixture contains no voids, that is

φn + φm = 1. (4.2)
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Substratum
z = −Hs

z

Rb

z = h(r,t)

r

Hb

 ∂Ω(t)

Ω(t)

Mixture of cells and ECM

Figure 4.1: A simplified representation of a vertical slice through the centre of
the biofilm and substratum. The biofilm exists in the region 0 < z < h(r, θ, t),
where (r, θ) ∈ Ω(t).

As indicated in §1.2.2, when defining these volume fractions we implicitly
assume that an appropriate averaging process has taken place, and do not
discuss the details here.

Along with biofilm mechanics, we incorporate the uptake of nutrients
from the substratum. To enable this, we introduce gs(r, θ, z, t), the nutrient
concentration in the substratum defined for −Hs < z < 0, and gb(r, θ, z, t),
the nutrient concentration in the biofilm, defined for 0 < z < h(r, θ, t)
and (r, θ) ∈ Ω(t). We use two distinct nutrient concentrations because the
nutrient concentration is initially discontinuous across the biofilm–substratum
interface. As the experiment proceeds, nutrients can enter the biofilm across
this interface, at which point they become available for consumption by the
cells. We assume that nutrients disperse by diffusion in the substratum, and
by both diffusion and advection with extracellular fluid inside the biofilm.

4.1.1 Mass and Momentum Balance

We derive the governing equations of our general model using the conservation
of mass and momentum for each species. The general mass balance equation
is

∂ρ

∂t
+∇ · q = J, (4.3)
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where ρ is the density, q represents the flux, and J is the net volumetric source
term. In each fluid phase, we assume that the flux is entirely advective. That
is, qα = φαuα, where α = n,m denotes a fluid phase, and uα = (ur, uθ, uz)α
are the fluid velocity vectors. Assuming that both the cellular and ECM
phases have constant density, the conservation of mass equation for each
phase reads

∂φα

∂t
+∇ · (φαuα) = Jα. (4.4)

For the fluid production terms Jα, we adapt the bilinear forms used in
Chapter 3 to incorporate cell death, which was neglected in our reaction–
diffusion model. Assuming that dead cells immediately become part of the
ECM, we write

Jn = ψnφngb − ψdgb, Jm = ψmφngb + ψdgb, (4.5)

where ψn, ψm, and ψd are constants. In (4.5), cell death is proportional to
cell density only, while production of both living cells and ECM increases
with local cell density and nutrient concentration. This is consistent with the
experimental observation that cellular components and the ECM are both
formed by catabolism of cellular synthesised glucose. Since (4.5) describes
mass creation in the biofilm, the fluid velocities for each phase do not satisfy
the usual incompressibility condition ∇ · uα = 0.

Regarding nutrients, we need to consider the nutrients in the substratum
and nutrients in the biofilm separately. In the substratum, nutrient movement
obeys Fick’s law of diffusion, and therefore we obtain the standard diffusion
equation

∂gs

∂t
= Ds∇2gs, (4.6)

where Ds is the coefficient of diffusion for glucose in agar. However, once
nutrients enter the biofilm, they become available for consumption by the cells,
and we assume that total flux is comprised of both diffusion and advection
with the extracellular fluid. Similar to Chapter 3, we also assume that the
rate of nutrient consumption is proportional to the local cell volume fraction
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and nutrient concentration. The mass balance equation for glucose in the
biofilm then reads

∂gb

∂t
+∇ · (φmgbum) = Db∇2gb − ηφngb, (4.7)

where Db is the glucose diffusivity in the biofilm, and η is the maximum rate
at which nutrient is consumed.

We obtain the remaining governing equations from the principle of momen-
tum conservation. Since experiments show that inertial effects are negligible
on the time and length scales of biofilm growth [99], the momentum balance
equations for each of the two phases are

∇ · (φασα) + Fα = 0, (4.8)

where σ is the stress tensor, and F represents net sources of momentum.
Equation (4.8), together with the mass balance equations (4.4), (4.6) and (4.7),
provide the basis for our model.

To write our equations in terms of physical properties of the fluids, we
require constitutive relations for the stress tensors σα and momentum source
terms Fα. These describe the mechanical behaviour of the cells and extracel-
lular fluid. For the stress tensors, we assume that both phases are Newtonian
viscous fluids. Owing to cell proliferation and local ECM production, the
stress components include terms involving ∇ · uα, which would otherwise
vanish due to incompressibility. In cylindrical co-ordinates, the stress tensor
is [149]

σα =


σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz


α

, (4.9)

with the components

σrrα = −pα −
2µα
3 ∇ · uα + 2µα

∂urα
∂r

, (4.10a)
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σrθα = σθrα = µα

[
r
∂

∂r

(
uθα
r

)
+ 1
r

∂urα
∂θ

]
, (4.10b)

σrzα = σzrα = µα

(
∂urα
∂z

+ ∂uzα
∂r

)
, (4.10c)

σθθα = −pα −
2µα
3 ∇ · uα + 2µα

r

(
∂uθα
∂θ

+ urα

)
, (4.10d)

σθzα = σzθα = µα

(
∂uθα
∂z

+ 1
r

∂uzα
∂θ

)
, (4.10e)

σzzα = −pα −
2µα
3 ∇ · uα + 2 ∂uzα

∂z
, (4.10f)

where for each phase pα is the pressure, and µα is the dynamic viscosity, and
these viscosities for each phase are assumed constant. When writing the
stress tensor components, we invoke Stokes’ hypothesis, giving the coefficient
−2µα/3 for the divergence terms [118–120] in (4.10). Here, we also neglect
growth pressure due to cell–cell contact, which was previously considered
in similar models [107, 121]. This is because yeast cells are non-motile,
and we expect them to be unable to actively generate forces in response
to environmental cues. By making this assumption, we suggest that the
incompressibility of the material is sufficient to drive expansion when cells
proliferate.

Regarding the sources of momentum, we follow Green et al. [123] by
assuming that the ECM exerts a drag force on the cells. We therefore
prescribe the momentum sources as

Fn = −k (un − um) + pn∇φn, Fm = −k (um − un) + pm∇φm, (4.11)

where k(φn, φm) ≥ 0 is the inter-phase viscous drag coefficient. The second
term on the right-hand side of each momentum source (4.11) represents
interfacial forces between cells and the ECM.

Now, if we substitute the constitutive relations for the stress tensors (4.9)
and momentum source terms (4.11) into the momentum balance equations
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(4.8), we obtain

− ∂

∂r
(φαpα)− 2µα

3
∂

∂r
(φα∇ · uα) + µα∇ ·

(
φα

∂uα

∂r

)

+µα∇ · (φα∇urα)− 2µαφα
r2

(
∂uθα
∂θ

+ urα

)

−µα
r2

∂

∂θ
(φαuθα)− k

(
urα − urβ

)
+ pα

∂φα

∂r
= 0,

(4.12a)

−1
r

∂

∂θ
(φαpα)− 2µα

3r
∂

∂θ
(φα∇ · uα) + µα∇ ·

(
φα
r

∂uα

∂θ

)

+µα∇ · (φα∇uθα) + 2µα
r2

∂

∂θ
(φαurα) + µαφα

∂

∂r

(
uθα
r

)
+µαφα

r2
∂urα
∂θ
− µα

r

∂

∂r
(φαuθα)− k

(
uθα − uθβ

)
+ pα

r

∂φα

∂θ
= 0,

(4.12b)

− ∂

∂z
(φαpα)− 2µα

3
∂

∂z
(φα∇ · uα) + µα∇ ·

(
φα

∂uα

∂z

)

+µα∇ · (φα∇uzα)− k
(
uzα − uzβ

)
+ pα

∂φα

∂z
= 0,

(4.12c)

where β represents the opposite phase to α. Given appropriate initial and
boundary conditions, these momentum balance equations (4.12), together
with the mass balance equations (4.4), (4.6) and (4.7), define a system of
governing equations for the fluid pressures, fluid velocities, and nutrient
concentrations.

4.1.2 Initial and Boundary Conditions

To close the model, we require initial and boundary conditions for all of the
physical variables. When constructing the general model, we will leave the
initial conditions arbitrary. We write

h(r, θ, 0) = H(r, θ), (4.13a)

φα(r, θ, z, 0) = Φα(r, θ, z), (4.13b)
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and so on, where the initial conditions for gs, and gb take the same form as
(4.13b).

We obtain the first boundary condition using the fact that nutrient cannot
pass through the base of the substratum, which is assumed to be rigid. Hence,
the no-flux condition on the substratum base is

(−Ds∇gs) · n̂ = ∂gs

∂z
= 0, on z = −Hs, (4.14)

where throughout this section n̂ will denote the unit outward normal vector
to the relevant surface. To enable cell proliferation and expansion, the biofilm
takes up nutrients from the substratum. We assume that the flux of nutrients
across the biofilm–substratum interface is proportional to the local concen-
tration difference. As there is no nutrient in the biofilm when the cells are
plated, this difference is initially non-zero, and we expect that advection and
consumption of nutrients in the biofilm will sustain the difference. Assuming
fluid cannot pass through the interface, we then have

(−Ds∇gs) · n̂ = Ds
∂gs

∂z
= −Q (gs − gb) on z = 0, (4.15a)

(gbφmum −Db∇gb) · n̂ = Db
∂gb

∂z
= −Q (gs − gb) on z = 0, (4.15b)

uα · n̂ = uzα = 0 on z = 0, (4.15c)

for (r, θ) ∈ Ω(t). In equations (4.15a) and (4.15b), the constant Q is the nutri-
ent mass transfer coefficient, which indicates the permeability of the biofilm.
We also impose a general tangential stress condition on the substratum–biofilm
interface, similar to that of Green et al. [123]. This condition reads

t̂ · (φασα · n̂) = −λα
(
φαuα · t̂

)
on z = 0, (4.16)

where t̂ is any unit tangent vector, and λα are coefficients representing the
strength of adhesion between the fluid and substratum for each phase. This
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gives the two general slip conditions

µα

(
∂urα
∂z

+ ∂uzα
∂r

)
= −λαurα, on z = 0, (4.17a)

µα

(
∂uθα
∂z

+ 1
r

∂uzα
∂θ

)
= −λαuθα, on z = 0, (4.17b)

for (r, θ) ∈ Ω(t).

On the free surface, we assume that nutrient cannot pass through the
biofilm–air interface. This no-flux condition is

(gbφmum −Db∇gb) · n̂ = 0 on z = h. (4.18)

Given that the unit outward normal to the free surface is

n̂ = ∇ (z − h)
|∇ (z − h)| = 1√

1 +
(
∂h
∂r

)2
+
(

1
r
∂h
∂θ

)2

(
− ∂h

∂r
,−1

r

∂h

∂θ
, 1
)
, (4.19)

this condition reads

gbφm

(
urm

∂h

∂r
+ uθm

r

∂h

∂θ
− uzm

)

= Db

(
∂gb

∂r

∂h

∂r
+ 1
r2

∂gb

∂θ

∂h

∂θ
− ∂gb

∂z

)
on z = h.

(4.20)

We also impose the kinematic condition

D
Dt (z − h) =

(
∂

∂t
+ uα · ∇

)
(z − h) = 0, (4.21)

on each phase, which states that fluid particles on the free surface must
remain there. By expanding the material derivative and gradient operators,
we can re-write this as

∂h

∂t
+ urα

∂h

∂r
+ uθα

r

∂h

∂θ
= uzα on z = h. (4.22)
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We obtain stress boundary conditions by noting that a free surface is subject
to zero tangential stress, and normal stress that is proportional to its local
curvature. In general, these conditions read

t̂ · (φασα · n̂) = 0 on z = h, (4.23a)

n̂ · (φασα · n̂) = −γακ on z = h, (4.23b)

where γα is the surface tension coefficient of phase α, and κ = ∇ · n̂ is the
mean free surface curvature. Similar to other models in biology [95], this
surface tension represents the strength of cell–cell adhesion at the biofilm–air
interface. These forces are thought to be weak in sliding motility, but have
greater relevance if there is strong adhesion to the substratum.

The stress tensors (4.9), and tangential and normal vectors enable us to
expand the general free surface stress conditions (4.23), to obtain

−2 ∂h

∂r

(
∂urα
∂r
− ∂uzα

∂z

)
− ∂h

∂θ

[
1
r2

∂urα
∂θ

+ ∂

∂r

(
uθα
r

)]

+ ∂urα
∂z

+ ∂uzα
∂r
−
(
∂h

∂r

)2 (
∂uzα
∂r

+ ∂urα
∂z

)

−1
r

∂h

∂r

∂h

∂θ

(
∂uθα
∂z

+ 1
r

∂uzα
∂θ

)
= 0 on z = h,

(4.24a)

−2
r

∂h

∂θ

(
1
r

∂uθα
∂θ

+ urα
r
− ∂uzα

∂z

)
− ∂h

∂r

[
r
∂

∂r

(
uθα
r

)
+ 1
r

∂urα
∂θ

]

+ ∂uθα
∂z

+ 1
r

∂uzα
∂θ
− 1
r

∂h

∂r

∂h

∂θ

(
∂uzα
∂r

+ ∂urα
∂z

)

− 1
r2

(
∂h

∂θ

)2 (1
r

∂uzα
∂θ

+ ∂uθα
∂z

)
= 0 on z = h,

(4.24b)
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(4.24c)

where the mean curvature of the free surface is
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∂r ∂θ
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(4.25)

This completes the boundary conditions associated with the model.

4.1.3 Model Reduction

Before applying the thin-film approximation, we make further assumptions
to simplify the general model derived in §4.1.1 and §4.1.2. First, following
O’Dea, Waters, and Byrne [106], we assume that the inter-phase drag is
large, and set k →∞. Under this assumption, we need to impose that both
fluid phases move with a common velocity for the momentum source terms
(4.11) to remain bounded. We define this velocity to be u = un = um. This
assumption matches the experimental hypothesis that yeast biofilms expand
by sliding motility, in which cells and extracellular fluid spread as a unit [150].
Furthermore, since both the cells and ECM are primarily composed of water,
it is reasonable to expect the physical properties of each phase to be similar.
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We then define

ρ = ρn = ρm, µ = µn = µm, and γ = γn = γm, (4.26)

all of which we assume constant, as well as p = pn = pm. These assumptions,
combined with the no voids assumption (4.2), reduce the governing equations
(4.4), (4.6), (4.7) and (4.12) to

1
r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= (ψn + ψm)φngb, (4.27a)

∂φn

∂t
+ 1
r

∂

∂r
(rurφn) + 1

r

∂

∂θ
(uθφn) + ∂

∂z
(uzφn) = ψnφngb − ψdgb, (4.27b)
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[
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∂r

(
r
∂gs

∂r

)
+ 1
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∂2gs

∂θ2 + ∂2gs

∂z2

]
, (4.27c)

∂gb

∂t
+ 1
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[rur (1− φn) gb] + 1
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∂z
[uz (1− φn) gb] = Db

[
1
r

∂

∂r

(
r
∂gb
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(4.27d)
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(4.27f)
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∂r
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∂uz

∂θ

)
= 0,

(4.27g)

where (4.27a) is obtained by summing the mass balance equations (4.4) for φn
and φm. Equations (4.27), with the initial and boundary conditions outlined
in §4.1.2, completes the derivation of our general model for biofilm growth.

4.1.4 Thin-Film Approximation

The process of simplifying the model begins with the non-dimensionalisation.
We seek to scale the model such that the relative magnitude of physical
effects are appropriately taken into account. The problem geometry is a key
consideration in thin-film approximations. Observing that the radius of a
biofilm significantly exceeds both its height and the depth of the substratum,
we assume that the aspect ratio

ε = Hs

Rb

(4.28)

is a small parameter such that 0 < ε� 1, and that we also haveHb/Rb = O(ε)
as ε→ 0. We then non-dimensionalise the governing equations with this in
mind. The choice of scaling regime depends on the relevant physics. First, we
investigate whether sliding motility is a possible mechanism for yeast biofilm
expansion. As biofilm–substratum adhesion is weak in sliding motility, it is
appropriate to model the biofilm as an extensional flow. However, strong
biofilm–substratum adhesion is also possible, and the lubrication regime is
appropriate in this scenario. We consider the extensional flow regime in
§4.2, and the lubrication regime in §4.3. In both regimes, we use asymptotic
analysis to reduce the complexity of the models. We achieve this by ensuring
that physical effects of similar importance are balanced, and neglecting those
that are comparatively small.
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4.2 Extensional Flow Regime
We first perform the thin-film reduction in the extensional flow regime. The
result of this analysis is a simplified model which we will use to investigate the
hypothesis that sliding governs yeast mat expansion. To obtain this model,
we first non-dimensionalise based on the thin aspect ratio assumption, taking
care that our scaling captures the reduced surface tension and pressure in the
extensional flow regime. We then use asymptotic analysis to systematically
reduce the model to a two-dimensional system, in which the z-dependence is
eliminated.

4.2.1 Scaling and Non-Dimensionalisation

To non-dimensionalise the equations, we use the initial biofilm radius, Rb,

as the length scale, and scale time by the cell production rate, ψn, and
initial nutrient concentration, G. The scaled variables are (where hats denote
dimensionless quantities)

(r, θ, z) = (Rbr̂, θ̂, εRbẑ),

(ur, uθ, uz) = (ψnGRbûr, ψnGRbûθ, εψnGRbûz),

t = t̂

ψnG
, gs = Gĝs, gb = Gĝb, pα = ψnGµαp̂α.

(4.29)

Under this scaling, the dimensionless form of the governing equations (4.27)
becomes (dropping hats)

1
r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= (1 + Ψm)φngb, (4.30a)

∂φn

∂t
+ 1
r

∂

∂r
(rurφn) + 1

r

∂

∂θ
(uθφn) + ∂

∂z
(uzφn) = φngb −Ψdφn, (4.30b)
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]
, (4.30c)
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Pe
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(4.30g)

where we have introduced the dimensionless constants

Ψm = ψm
ψn

, Ψd = ψdG

ψn
,

D = Ds

ψnGR2
b

, Pe = ψnGR
2
b

Db

, and Υ = ηR2
b

Db

,

(4.31)

all of which we assume to be O(1) as ε→ 0. In (4.31), Ψm and Ψd are the
dimensionless ECM production and cell death rates respectively, scaled by
the cell production rate and initial nutrient concentration. The parameter D
is the coefficient of diffusion for nutrients in the substratum, scaled by the cell
production rate and biofilm radius. The Péclet number, Pe, is the ratio of
the rates of advective transport to diffusive transport within the biofilm. The
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parameter Υ is the dimensionless nutrient consumption rate. We also note
that we scale Υ differently to the corresponding term in Ward and King [120].
In their model, the biofilm was immersed in a nutrient-rich liquid culture
medium, and hence they balanced nutrient consumption with diffusion in
the z-direction. In contrast, our biofilms grow on a nutrient-limited thin
substratum, making it appropriate to balance nutrient consumption with the
temporal derivative and in-plane advection and diffusion.

Sliding motility is thought to occur if adhesion between the biofilm and
substratum is weak, and surface tension is not important [150]. To model this
we assume that λα = 0, and subsequently the general slip conditions (4.17)
correspond to perfect slip conditions, which were considered by Ward and
King [120]. The dimensionless boundary conditions are then

∂gs

∂z
= 0, on z = −1, (4.32a)

∂gs

∂z
= −ε2Qs (gs − gb) on z = 0, (4.32b)

∂gb

∂z
= −ε2Qb (gs − gb) on z = 0, (4.32c)

uz = 0 on z = 0, (4.32d)

∂ur

∂z
+ ε2 ∂uz

∂r
= 0, on z = 0, (4.32e)
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= 0, on z = 0, (4.32f)
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(4.32g)
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= uz on z = h, (4.32h)
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(4.32k)

where we have introduced the dimensionless parameters

Qs = QRb

εDs

, Qb = QRb

εDb

, and γ∗ = 1
Ca . (4.33)

Like (4.31), we also assume these to be O(1) as ε → 0, and will validate
these assumptions with experimental estimates in §5.1.2. In (4.33), Qs is a
coefficient that describes the rate of nutrient depletion in the substratum,
and Qb describes the rate of nutrient uptake by the biofilm. We define the
dimensionless surface tension coefficient, γ∗, as the reciprocal of the capillary
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number,
Ca = ψnGRbµ

εγ
, (4.34)

which is the ratio of viscous forces to surface tension forces. The normal stress
condition (4.32k) also depends on the dimensionless free surface curvature,
κ∗, which is given by
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(4.35)

The governing equations (4.30) and boundary conditions (4.32) then complete
the dimensionless form of our extensional flow model, on which we apply the
thin-film reduction.

4.2.2 Thin-Film Equations
We now use the thin-film assumption introduced in §4.1.4 to systematically
simplify the dimensionless extensional flow model derived in §4.2.1. This
involves expanding the dependent variables as asymptotic series in powers of
ε2,

h(r, θ, t) ∼ h0(r, θ, t) + ε2h1(r, θ, t) +O
(
ε4
)
, (4.36a)

φn(r, θ, z, t) ∼ φn0(r, θ, z, t) + ε2φn1(r, θ, z, t) +O
(
ε4
)
, (4.36b)

and so on, where series for p, ur, uθ, uz, gs, and gb take the same form as
(4.36b).

Substituting the expansions (4.36) into the governing equations (4.30) and
boundary conditions (4.32) enables us to balance physical effects of similar
magnitude. In practice, we simplify the model by considering the leading-
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order behaviour only, which represents the strongest physical features, the
remainder being O(ε2) as ε→ 0, and hence much less significant. Applying
this process to our fluid model, at leading order we obtain

1
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∂

∂r
(rur0) + 1

r

∂uθ0

∂θ
+ ∂uz0

∂z
= (1 + Ψm)φn0gb0, (4.37a)
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(4.37b)

∂2gs0
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∂z2 = 0, (4.37c)
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These are subject to the leading-order boundary conditions

∂gs0

∂z
= 0 on z = −1, 0, (4.38a)

∂gb0
∂z

= 0 on z = 0, h0, (4.38b)
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= ∂uθ0
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= 0 on z = 0, (4.38c)
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uz0 = 0 on z = 0, (4.38e)
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(4.38g)
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where the right-hand side of (4.38g) represents the leading-order contribution
of the dimensionless curvature (4.35).

Equations (4.37c) and (4.37d) and the associated boundary conditions
(4.38a)–(4.38d) demonstrate that gs0, gb0, ur0, and uθ0 are independent of
z. This is a key feature of extensional flows, and follows from the fluid
experiencing zero tangential stress on its upper and lower surfaces. In addition,
this enables us to integrate out the z dependence in the governing equations,
to derive a two-dimensional closed system of equations for the leading-order
variables [110, 120]. First, we introduce the depth-averaged cell volume
fraction denoted with a bar,

φ̄n0 = 1
h0

∫ h0

0
φn0 dz. (4.39)

We can now integrate out the z dependence in the conservation of mass
equations (4.37a) and (4.37b), to reduce the dimension of the leading-order
model. Integrating (4.37a) with respect to z across the biofilm depth from 0
to h, and applying the boundary conditions (4.38e) and (4.38f), we obtain
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Similarly, integrating (4.37b) with respect to z and applying (4.38e) and (4.38f)
yields
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(4.41)

As φn0 depends on z, we apply Leibniz’s rule to evaluate the integral. Doing
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so gives
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(4.42)

Terms arising from the application of Leibniz’s integral rule then cancel with
those obtained from the kinematic boundary condition. The remaining terms
give the conservation of mass equation for the depth-averaged cell volume
fraction,

∂

∂t

(
φ̄n0h0

)
+ 1
r

∂

∂r

(
rur0φ̄n0h0

)
+ 1
r

∂

∂θ

(
uθ0φ̄n0h0

)
= (gb0 −Ψd) φ̄n0h0.

(4.43)

We can now multiply (4.40) by φ̄n0, and subtract the result from (4.43). This
eliminates the height from (4.43), giving

∂φ̄n0

∂t
+ ur0

∂φ̄n0

∂r
+ uθ0

r

∂φ̄n0

∂θ
= φ̄n0

[
gb0 −Ψd − (1 + Ψm) φ̄n0gb0

]
. (4.44)

Equations (4.40) and (4.44) are the z-independent conservation of fluid mass
equations for our thin-film extensional flow model.

To obtain z-independent equations for the leading-order nutrient con-
centrations, we need to consider the higher-order correction terms to the
governing equations (4.30c) and (4.30d). Upon substituting the expansions
(4.36), matching O(1) terms gives

∂2gs1

∂z2 = 1
D

∂gs0

∂t
− 1
r

∂

∂r

(
r
∂gs0

∂r

)
− 1
r2

∂2gs0

∂θ2 , (4.45a)
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∂2gb1
∂z2 = Pe

{
∂gb0
∂t

+ 1
r

∂

∂r
[rur0 (1− φn0) gb0]

+1
r

∂

∂θ
[uθ0 (1− φn0) gb0] + ∂

∂z
[uz0 (1− φn0) gb0]

}

− 1
r

∂

∂r

(
r
∂gb0
∂r

)
− 1
r2

∂2gb0
∂θ2 + Υφn0gb0.

(4.45b)

Using (4.32a)–(4.32c) and (4.32g), we obtain the higher-order corrections to
the boundary conditions,

∂gs1

∂z
= 0 on z = −1, (4.46a)

∂gs1

∂z
= −Qs (gs0 − gb0) on z = 0, (4.46b)

∂gb1
∂z

= −Qb (gs0 − gb0) on z = 0, (4.46c)

∂gb1
∂z

= −Pe (1− φn0) gb0
(
ur0

∂h0

∂r
+ uθ0

r

∂h0

∂θ
− uz0

)

+ ∂gb0
∂r

∂h0

∂r
+ 1
r2

∂gb0
∂θ

∂h0

∂θ
on z = h0.

(4.46d)

This technique is useful because the higher-order correction terms can be
written solely in terms of leading-order quantities. Integrating (4.45a) with
respect to z across the substratum depth gives

[
∂gs1

∂z

]0

−1
= 1
D

∂gs0

∂t
− 1
r

∂

∂r

(
r
∂gs0

∂r

)
− 1
r2

∂2gs0

∂θ2 . (4.47)

On applying the boundary conditions (4.46a) and (4.46b), we obtain the
z-independent leading-order mass balance equations for nutrients in the
substratum,

∂gs0

∂t
= D

[
1
r

∂

∂r

(
r
∂gs0

∂r

)
+ 1
r2

∂2gs0

∂θ2

]
−DQs (gs0 − gb0) , (4.48)

for 0 < r < S(θ, t). We note that, unlike the other variables, the nutrient
concentration in the substratum is defined over the entire Petri dish, instead

100



4.2. Extensional Flow Regime

of only the biofilm. We scale the dimensional Petri dish radius Rp by the
characteristic biofilm radius Rb. This introduces the dimensionless Petri dish
radius

R = Rp

Rb

. (4.49)

In the region S(θ, t) < r < R that is not inhabited by the biofilm, the mass
balance for nutrients in the substratum reads

∂gs0

∂t
= D

[
1
r

∂

∂r

(
r
∂gs0

∂r

)
+ 1
r2

∂2gs0

∂θ2

]
. (4.50)

Equation (4.50) differs from (4.48) because nutrient depletion from the sub-
stratum cannot occur in regions the biofilm does not inhabit. A solution for
gs0 then satisfies both (4.48) and (4.50), such that gs0 and its flux are both
continuous at r = S(θ, t).

For the nutrient concentration in the biofilm, we can similarly integrate
(4.45b) with respect to z across the biofilm depth. This gives

[
∂gb1
∂z

]h0

0
= Peh0

∂gb0
∂t

+ Pe
∫ h0

0

{
1
r

∂

∂r
[rur0 (1− φn0) gb0]

+1
r

∂

∂θ
[uθ0 (1− φn0) gb0]

}
dz + Pe [uz0 (1− φn0) gb0]h0

0

− h0

[
1
r

∂

∂r

(
r
∂gb0
∂r

)
+ 1
r2

∂2gb0
∂θ2

]
+ Υφ̄n0gb0h0.

(4.51)

Next, we apply the boundary conditions (4.38e), (4.38f), (4.46c) and (4.46d),
and use Leibniz’s integral rule to evaluate the integral on the right-hand side.
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This gives

∂gb0
∂r

∂h0

∂r
+ 1
r2

∂gb0
∂θ

∂h0

∂θ
+ Pe

(
1− φn0|z=h0

)
gb0

∂h0

∂t

+Qb (gs0 − gb0) = Pe
{

1
r

∂

∂r

[
rur0(1− φ̄n0)gb0h0

]
−ur0

(
1− φn0|z=h0

)
gb0

∂h0

∂r

}
+ Pe

{
1
r

∂

∂θ

[
uθ0(1− φ̄n0)gb0h0

]
−uθ0

r

(
1− φn0|z=h0

)
gb0

∂h0

∂θ

}
+ Pe

[
h0

∂gb0
∂t

+
(
1− φn0|z=h0

)
gb0

(
∂h0

∂t
+ ur0

∂h0

∂r
+ uθ0

r

∂h0

∂θ

)]

−h0

[
1
r

∂

∂r

(
r
∂gb0
∂r

)
+ 1
r2

∂2gb0
∂θ2

]
+ Υφ̄n0gb0h0.

(4.52)

Again, we find that contributions from Leibniz’s rule cancel with terms
obtained from the boundary conditions. All terms involving φn0|z=h0 vanish,
and after simplifying we obtain the z-independent equation

Pe
{
h0

∂gb0
∂t

+ 1
r

∂

∂r

[
rur0

(
1− φ̄n0

)
gb0h0

]
+1
r

∂

∂θ

[
uθ0

(
1− φ̄n0

)
gb0h0

]}
= 1
r

∂

∂r

(
rh0

∂gb0
∂r

)

+ 1
r2

∂

∂θ

(
h0

∂gb0
∂θ

)
+Qb (gs0 − gb0)−Υφ̄n0gb0h0.

(4.53)

Together with (4.48) and (4.50), equation (4.53) completes the leading-order
nutrient balance equations for our thin-film extensional flow model.

To obtain equations for the leading-order fluid velocity components, we
consider the higher-order correction terms to the momentum equations (4.30e)
and (4.30f). Using the leading-order mass balance equation (4.37a) to simplify,
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these equations are

∂2ur1

∂z2 = ∂p0

∂r
− 2
r

∂

∂r

(
r
∂ur0

∂r

)
+ 2

3 (1 + Ψm) ∂

∂r
(φn0gb0)

− 1
r

∂

∂θ

(
∂uθ0

∂r
+ 1
r

∂ur0

∂θ

)
− ∂2uz0

∂r ∂z
+ 3
r2

∂uθ0

∂θ
+ 2ur0

r2 ,

(4.54a)

∂2uθ1

∂z2 = 1
r

∂p0

∂θ
− 2
r2

∂2uθ0

∂θ2 + 2
3r (1 + Ψm) ∂

∂θ
(φn0gb0)

− 1
r

∂

∂r

(
∂ur0

∂θ
+ r

∂uθ0

∂r

)
− 1
r

∂2uz0

∂θ ∂z
− 3
r2

∂ur0

∂θ
+ uθ0

r2 .

(4.54b)

We use (4.32e), (4.32f), (4.32i) and (4.32j) to obtain higher-order corrections
to the boundary conditions for the fluid velocity components. This yields

∂ur1

∂z
= 0, on z = 0, (4.55a)

∂uθ1

∂z
= 0, on z = 0, (4.55b)

∂ur1

∂z
= 2 ∂h0

∂r

(
∂ur0

∂r
− ∂uz0

∂z

)
+ ∂h0

∂θ

[
1
r2

∂ur0

∂θ
+ ∂

∂r

(
uθ0

r

)]

− ∂uz0

∂r
on z = h0,

(4.55c)

∂uθ1

∂z
= 2
r

∂h0

∂θ

(
1
r

∂uθ0

∂θ
+ ur0

r
− ∂uz0

∂z

)

+ ∂h0

∂r

[
r
∂

∂r

(
uθ0

r

)
+ 1
r

∂ur0

∂θ

]
− 1
r

∂uz0

∂θ
on z = h0.

(4.55d)

To write (4.54) in terms of leading-order fluid velocities, we need to solve for
the leading-order pressure p0. As ur0 and uθ0 are independent of z, (4.37e)
simplifies to

∂p0

∂z
= 4

3
∂2uz0

∂z2 . (4.56)

Integrating (4.56) with respect to z, applying the boundary condition (4.38g),
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and using (4.37a) to simplify, we obtain

p0 = 4
3 (1 + Ψm)φn0gb0 −

2
r

[
∂

∂r
(rur0) + ∂uθ0

∂θ

]

− γ∗
[

1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
.

(4.57)

Substituting (4.57) into (4.54), we can rewrite the higher-order corrections
for the fluid velocity components as

∂2ur1

∂z2 = 2 (1 + Ψm) ∂

∂r
(φn0gb0)− 2 ∂

∂r

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]

− 2
r

∂

∂r

(
r
∂ur0

∂r

)
− 1
r

∂2uθ0

∂r ∂θ
− 1
r2

∂2ur0

∂θ2 −
∂2uz0

∂r ∂z

+ 3
r2

∂uθ0

∂θ
+ 2ur0

r2 − γ
∗ ∂

∂r

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
,

(4.58a)

∂2uθ1

∂z2 = 2
r

(1 + Ψm) ∂

∂θ
(φn0gb0)− 2

r

∂

∂θ

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]

− 2
r2

∂2uθ0

∂θ2 −
1
r

∂2ur0

∂r ∂θ
− 1
r

∂

∂r

(
r
∂uθ0

∂r

)
− 1
r

∂2uz0

∂r ∂z

− 3
r2

∂ur0

∂θ
+ uθ0

r2 −
γ∗

r

∂

∂θ

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
.

(4.58b)

Next, we integrate (4.58) with respect to z across the biofilm depth, and apply
the boundary conditions (4.55). Using Leibniz’s rule to integrate derivatives
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of φn0, we obtain

2 ∂h0

∂r

(
∂ur0

∂r
− ∂uz0

∂z

∣∣∣∣∣
z=h0

)
+ ∂h0

∂θ

[
1
r2

∂ur0

∂θ
+ ∂

∂r

(
uθ0

r

)]

− ∂uz0

∂r

∣∣∣∣∣
z=h0

= 2 (1 + Ψm)
[
∂

∂r

(
φ̄n0gb0h0

)
− φn0|z=h0

gb0
∂h0

∂r

]

−2h0
∂

∂r

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]
− 2h0

r

∂

∂r

(
r
∂ur0

∂r

)

−h0

r

∂2uθ0

∂r ∂θ
− h0

r2
∂2ur0

∂θ2 −
[
∂uz0

∂r

]h0

0
+ 3h0

r2
∂uθ0

∂θ

+2ur0h0

r2 − γ∗h0
∂

∂r

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
,

(4.59a)

2
r

∂h0

∂θ

(
1
r

∂uθ0

∂θ
+ ur0

r
− ∂uz0

∂z

∣∣∣∣∣
z=h0

)
+ ∂h0

∂r

[
r
∂

∂r

(
uθ0

r

)
+ 1
r

∂ur0

∂θ

]

−1
r

∂uz0

∂θ

∣∣∣∣∣
z=h0

= 2
r

(1 + Ψm)
[
∂

∂θ

(
φ̄n0gb0h0

)
− φn0|z=h0

gb0
∂h0

∂θ

]

−2h0

r

∂

∂θ

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]
− 2h0

r2
∂2uθ0

∂θ2 −
h0

r

∂2ur0

∂r ∂θ

−h0

r

∂

∂r

(
r
∂uθ0

∂r

)
− 1
r

[
∂uz0

∂θ

]h0

0
− 3h0

r2
∂ur0

∂θ

+uθ0h0

r2 − γ∗h0

r

∂

∂θ

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
.

(4.59b)

To obtain z-independent equations for the leading-order velocities, we need to
eliminate uz0. We first rearrange the conservation of mass equation (4.37a),
which gives

∂uz0

∂z
= (1 + Ψm)φn0gb0 −

1
r

[
∂

∂r
(rur0) + ∂uθ0

∂θ

]
. (4.60)

Integrating (4.60) with respect to z, and applying (4.38e) yields

uz0 = (1 + Ψm)
∫ z

0
φn0gb0 dz̃ − z

r

[
∂

∂r
(rur0) + ∂uθ0

∂θ

]
. (4.61)
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Substituting (4.61) into (4.59) then gives

2 ∂h0

∂r

[
∂ur0

∂r
+ 1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]
+ ∂h0

∂θ

[
1
r2

∂ur0

∂θ
+ ∂

∂r

(
uθ0

r

)]

= 2 (1 + Ψm) ∂

∂r

(
φ̄n0gb0h0

)
− 2h0

∂

∂r

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]

−2h0

r

∂

∂r

(
r
∂ur0

∂r

)
− h0

r

∂2uθ0

∂r ∂θ
− h0

r2
∂2ur0

∂θ2 + 3h0

r2
∂uθ0

∂θ

+2ur0h0

r2 − γ∗h0
∂

∂r

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
,

(4.62a)
2
r2

∂h0

∂θ

[
2 ∂uθ0

∂θ
+ ur0 + ∂

∂r
(rur0)

]
+ ∂h0

∂r

[
r
∂

∂r

(
uθ0

r

)
+ 1
r

∂ur0

∂θ

]

= 2
r

(1 + Ψm) ∂

∂θ

(
φ̄n0gb0h0

)
− 2h0

r

∂

∂θ

[
1
r

∂

∂r
(rur0) + 1

r

∂uθ0

∂θ

]

−2h0

r2
∂2uθ0

∂θ2 −
h0

r

∂2ur0

∂r ∂θ
− h0

r

∂

∂r

(
r
∂uθ0

∂r

)
− 3h0

r2
∂ur0

∂θ

+uθ0h0

r2 − γ∗h0

r

∂

∂θ

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
.

(4.62b)

After simplification, we obtain the leading-order momentum balance equations,

4 ∂

∂r

[
h0

r

∂

∂r
(rur0)

]
− 2ur0

r

∂h0

∂r
+ 1
r2

∂

∂θ

(
h0

∂ur0

∂θ

)

+ ∂

∂θ

[
h0

∂

∂r

(
uθ0

r

)]
+ 2 ∂

∂r

(
h0

r

∂uθ0

∂θ

)
− 2h0

r2
∂uθ0

∂θ
=

2 (1 + Ψm) ∂

∂r

(
φ̄n0gb0h0

)
− γ∗h0

∂

∂r

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
,

(4.63a)

4
r2

∂

∂θ

(
h0

∂uθ0

∂θ

)
+ 1
r

∂

∂r

(
rh0

∂uθ0

∂r

)
− uθ0

r2
∂

∂r
(rh0)

+ 1
r2

∂

∂r

(
rh0

∂ur0

∂θ

)
+ 2
r

∂

∂θ

(
h0

∂ur0

∂r

)
+ 4
r2

∂

∂θ
(ur0h0) =

2
r

(1 + Ψm) ∂

∂θ

(
φ̄n0gb0h0

)
− γ∗h0

r

∂

∂θ

[
1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
.

(4.63b)
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Equations (4.40), (4.44), (4.48), (4.50), (4.53), (4.63a) and (4.63b) then form
a closed system of equations for the leading-order variables h0, φ̄n0, gs0, gb0,

ur0, and uθ0. Together, these equations constitute our thin-film extensional
flow model. Notably, all equations are now independent of z, demonstrating
that the thin-film approximation makes it possible to simplify the original
model.

4.3 Lubrication Regime
In §4.2, we considered biofilm expansion governed by weak adhesion to the
substratum and low surface tension, as these conditions are thought to occur
in sliding motility. However, strong biofilm–substratum adhesion is also
possible, for which large pressure and surface tension contribute to expansion.
We now undertake a similar process to §4.2, except this time we apply a new
non-dimensionalisation to account for this large pressure and surface tension.
This gives rise to a new model where the fluid velocities depend on z, and
the fluid mass balances take the form of generalised lubrication equations.

4.3.1 Scaling and Non-Dimensionalisation

In the lubrication regime, pressure is large compared to the extensional flow
regime. To model this, we introduce the rescaled pressure (where the dagger
denotes a dimensionless quantity)

p = ψnGµ

ε2 p†, (4.64)

while retaining the same scaling (4.29) as the extensional flow regime for other
variables. Under the lubrication regime scaling, the dimensionless conservation
of mass equations (4.30a)–(4.30d) are unchanged from the extensional flow
regime. The dimensionless conservation of momentum equations do change,
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and instead become (dropping hats and daggers)

− 1
ε2

∂p

∂r
+ 2
r

∂

∂r

(
r
∂ur

∂r

)
− 2

3
∂

∂r

[
1
r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]

+1
r

∂

∂θ

(
∂uθ

∂r
+ 1
r

∂ur

∂θ

)
+ ∂

∂z

(
∂uz

∂r
+ 1
ε2

∂ur

∂z

)

− 3
r2

∂uθ

∂θ
− 2ur

r2 = 0,

(4.65a)

− 1
ε2r

∂p

∂θ
+ 2
r2

∂2uθ

∂θ2 −
2
3r

∂

∂θ

[
1
r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z

]

+1
r

∂

∂r

(
∂ur

∂θ
+ r

∂uθ
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)
+ ∂

∂z

(
1
r

∂uz

∂θ
+ 1
ε2

∂uθ

∂z

)

+ 3
r2

∂ur

∂θ
− uθ
r2 = 0,

(4.65b)

− 1
ε2

∂p

∂z
+ 2 ∂2uz

∂z2 −
2
3
∂

∂z

[
1
r

∂

∂r
(rur) + 1
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(4.65c)

where surface tension and pressure terms now appear in the leading-order
momentum balance.

In the extensional flow regime, we assumed that there was weak adhesion
between the fluid and the substratum, which is appropriate for modelling
sliding motility. However, in the lubrication regime we instead assume that
cells adhere strongly to the substratum. This involves taking λα →∞ in the
general tangential stress conditions (4.17). For the tangential stress to remain
bounded, we need to impose no-slip conditions on the biofilm–substratum
interface. These conditions read

ur = uθ = 0 on z = 0. (4.66)

Owing to the re-scaled pressure term, the free surface normal stress boundary
condition also differs from the extensional flow case. In the lubrication regime
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we instead have
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(4.67)

In (4.67), γ∗ = 1/Ca† is defined in the same way as (4.33), but now incorpo-
rates the new capillary number

Ca† = ψnGRbµ

ε3γ
. (4.68)

The new capillary number represents that we expect the new large pressure
to be balanced by a comparatively large surface tension. The remaining
dimensionless boundary conditions (4.32a)–(4.32d) and (4.32g)–(4.32j) remain
unchanged from the extensional flow regime.

4.3.2 Thin-Film Equations

As with the extensional flow regime, we use the thin-film approximation
to simplify the lubrication model. On substituting the same power series
expansions (4.36) into the dimensionless governing equations (4.30a)–(4.30d)
and (4.65), the leading-order mass conservation equations (4.37a)–(4.37c)
are unchanged. At leading-order, the momentum balance equations (4.65)
become

∂p0

∂r
= ∂2ur0

∂z2 , (4.69a)
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1
r

∂p0

∂θ
= ∂2uθ0

∂z2 , (4.69b)

∂p0

∂z
= 0. (4.69c)

The leading-order boundary conditions consist of (4.38a), (4.38b), (4.38d)
and (4.38f), along with no-slip and no-penetration conditions on the biofilm–
substratum interface,

ur0 = uθ0 = uz0 = 0 on z = 0, (4.70)

and the normal stress condition

p0 = −γ∗
[

1
r

∂

∂r

(
r
∂h0

∂r

)
+ 1
r2

∂2h0

∂θ2

]
on z = h0. (4.71)

In (4.71), the right-hand side term contains the leading-order contribution of
the dimensionless free surface curvature (4.35).

The next step is to derive a closed system of equations in terms of leading-
order quantities. Unlike in the extensional flow regime, in the lubrication
regime we do not need to consider higher-order correction terms in the
momentum equations. Instead, we integrate (4.69c) with respect to z and
apply the normal stress boundary condition (4.71) to obtain

p0 = −γ∗
[

1
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∂

∂r

(
r
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)
+ 1
r2

∂2h0

∂θ2

]
. (4.72)

By (4.71) and (4.72), the pressure throughout the biofilm is equal to the
pressure on the free surface. We can use this to obtain explicit formulae for
the leading-order fluid velocity components. Integrating the leading-order
radial and azimuthal momentum equations (4.69a) and (4.69b) twice with
respect to z, and applying the conditions (4.38d) and (4.70), we obtain

ur0 = z
(
z

2 − h0

)
∂p0

∂r
, (4.73a)
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uθ0 = z
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. (4.73b)

Using (4.72) to eliminate the pressure then gives
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In the extensional flow regime, it was not possible to solve for these velocity
components explicitly. However, in the lubrication regime these velocities
(4.74) depend on the depth z. Therefore, we cannot eliminate the z-dependence
from the leading-order lubrication model, as was possible in the extensional
flow regime.

Like in the extensional flow regime, we now derive leading-order mass
conservation equations for the fluids in terms of the biofilm height. Integrating
(4.37a) with respect to z across the biofilm depth yields, on application of
the kinematic (4.38f) and no-slip (4.70) conditions,
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(4.75)

To evaluate the right-hand side of (4.75), we use Leibniz’s integral rule to
obtain
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(4.76)
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All terms evaluated at the free surface then cancel, yielding
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(4.77)

On replacing the velocity terms in (4.77) with the explicit formulae (4.74),
we obtain the leading-order conservation of total fluid mass equation,
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(4.78)

Since the leading-order cell volume fraction φn0 and the fluid velocity
components (4.74) both depend on z, a similar approach based on vertical
integration is not possible for the cellular phase mass conservation equation. In
the lubrication model, we instead retain the three-dimensional mass balance
equation (4.37b). Substituting the known radial and azimuthal velocity
components (4.74) into (4.37b), we obtain
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(4.79)

As we cannot integrate out the z dependence, solving the model in the
lubrication regime requires keeping track of uz0.We achieve this by integrating
(4.37a) with respect to z, and applying the boundary condition (4.70), which
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gives
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Evaluating integrals in (4.80) involving the surface tension coefficient analyti-
cally, we obtain
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(4.81)

which is our leading-order equation for the vertical component of fluid velocity.

To close the model, we require leading-order equations for the nutrient
concentrations. The derivation of the equation for the nutrient concentration
in the substratum is unchanged from the extensional flow regime, which
gives (4.48). To obtain an equation for gb0, we apply a similar process to the
extensional flow regime. The only difference is that, in the lubrication regime,
we cannot explicitly integrate terms involving products of ur0, uθ0, and φn0,

as all of these depend on z. The lubrication model equation is
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(4.82)

which upon substitution of the leading-order radial and azimuthal velocity
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components (4.74), becomes
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(4.83)
Equations (4.39), (4.48), (4.50), (4.78), (4.79), (4.81) and (4.83) now form a
closed system of equations for h0, φn0, φ̄n0, uz0, gs0 and gb0. These equations
constitute our thin-film model in the lubrication regime.

4.4 Summary
To investigate the effect of colony mechanics on biofilm expansion, we derived
a two-phase fluid model for yeast biofilm growth. We treated the biofilm
as a mixture of living cells and an ECM, both of which we considered
Newtonian viscous fluids. We modelled three-dimensional biofilm growth on
a solid substratum, from which the biofilm takes up nutrients. We obtained
governing equations by applying conservation of mass and momentum for
each fluid phase and the nutrient concentrations. This, combined with initial
and boundary conditions, provided a closed model for biofilm growth.

The full model was a complicated system of equations in three dimensions,
which makes analytical and numerical progress difficult. To simplify the
model, we assumed that living cells and the ECM have the same physical
properties, and that each moves with a common velocity. Next, as the biofilm
height is small compared to its radius, we used the thin-film approximation
to further simplify the model. In doing so, our choice of distinguished limits
depended on the balance between biofilm mechanics and nutrient movement,
uptake, and consumption. This led us to consider two regimes that have
possible relevance to biofilm growth.
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First, we derived a model in the extensional flow regime, in which cell
proliferation and weak biofilm–substratum adhesion drives expansion. This
modelled biofilm growth by sliding motility, a candidate mechanism for S.
cerevisiae mat expansion. The key assumption of this model was imposing
zero-stress on the biofilm–substratum interface, which ensured that the leading-
order fluid velocity components did not depend on z. We then obtained the
two-dimensional extensional flow model (dropping the zero subscript on
leading-order variables),
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(4.84g)

Unless otherwise stated, all of these equations are defined on the moving
boundary 0 < r < S(θ, t), which represents the area occupied by the biofilm.

In the lubrication regime, we assumed strong adhesion between the biofilm
and substratum, and large surface tension and pressure. In the biofilm growth
context, surface tension represents the strength of cell–cell adhesion at the
biofilm surface. This provided an additional expansion mechanism that was
not present in the extensional flow model. In the lubrication regime, we
assumed no-slip on the biofilm–substratum interface, and the leading-order
fluid velocities depended on z. We then obtained the three-dimensional model
(again dropping the zero subscripts),
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(4.85f)
where all equations are to be solved on 0 < r < R. Having derived the
thin-film models, the next two chapters involve their analysis and numerical
solutions. In Chapter 5, we use the extensional flow model and experimental
data to determine the extent to which sliding motility can explain yeast
biofilm expansion. We then contrast this with solutions to the lubrication
model in Chapter 6.

Depending on the desired application, our modelling framework retains
the possibility of investigating different mechanisms. A more detailed model
could involve treating the agar as viscoelastic, rather than solid. We could
then impose continuity of shear stress at biofilm–substratum interface, instead
of the zero tangential stress assumed here. The multi-phase framework can
also incorporate more complicated cell production mechanisms, for example
ECM production regulated by quorum sensing. It is also possible to include
additional mechanical behaviour, for example biofilm viscoelasticity or expan-
sion driven by osmotic swelling. We intend to tackle some of these scenarios
in future work, to shed further light on the mechanisms governing biofilm
expansion.
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Chapter 5

Extensional Flow Regime: Sliding
Motility

We use the extensional flow model derived in §4.2 to test the hypothesis
that sliding motility is the mechanism governing yeast biofilm expansion.
To achieve this, we compare results from the S. cerevisiae mat formation
experiments with numerical solutions to the model. We restrict attention
to the one-dimensional axisymmetric form of the model, which captures the
radial expansion speed and profile shape of the biofilm. First, we propose
appropriate initial and boundary conditions for the axisymmetric model.
Next, we solve the one-dimensional axisymmetric problem numerically, and
find good agreement between numerical solutions and experimental data.
Having established the biological utility of the model, we then investigate the
effect of parameters on the biofilm size and shape.

5.1 One-Dimensional Axisymmetric Model
To test whether sliding motility is a possible mechanism for biofilm expansion,
we compare the speed of expansion with experimental data. Although we
derived a two-dimensional leading-order extensional flow model in §4.2, the
one-dimensional axisymmetric model is sufficient to achieve this objective.
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Accordingly, we neglect azimuthal dependence in (4.84), which yields the
one-dimensional axisymmetric model (where all equations are defined for
0 < r < S(t) unless otherwise specified)
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)
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)
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(
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)
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[
1
r

∂

∂r

(
r
∂h

∂r

)]
.

(5.1f)

We obtain boundary conditions for (5.1) from experimental observations and
the boundary conditions of the general mechanical model introduced in §4.1.2.
This enables us to close the axisymmetric model (5.1), and proceed with
numerical solutions.

5.1.1 Initial and Boundary Conditions
In the experiments, the Petri dish is initially filled uniformly with nutrients,
and a small droplet containing cells and fluid is inoculated in the centre of
the dish using a pipette. The fluid in the droplet is rapidly absorbed into
the agar substratum, leaving a thin layer of cells, which we assume adopts a
parabolic profile. Experiments of C. albicans show that extracellular material
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5.1. One-Dimensional Axisymmetric Model

only emerges in mature biofilm [151], hence we assume the biofilm is initially
made up of cells only. Appropriate initial conditions are therefore

S(0) = 1, h(r, 0) = H0
(
1− r2

)
, φ̄n(r, 0) = 1,

gs(r, 0) = 1, gb(r, 0) = 0,
(5.2)

where H0 is the initial biofilm height, which we expect to be O(ε) as ε→ 0.
In specifying (5.2), we have chosen the characteristic length scales to be the
initial biofilm height and radius, and scale both nutrient concentrations by
the initial concentration in the substratum.

For the boundary conditions, we first assume that the centre of the biofilm
is fixed. Since the biofilm and nutrient concentration both radially symmetric,
we obtain the conditions

∂h

∂r

∣∣∣∣∣
(0,t)

= 0, ∂φ̄n

∂r

∣∣∣∣∣
(0,t)

= 0,

∂gs

∂r

∣∣∣∣∣
(0,t)

= 0, ∂gb

∂r

∣∣∣∣∣
(0,t)

= 0, ur(0, t) = 0.
(5.3)

In addition, the contact line position S(t) evolves according to the local fluid
velocity, that is

dS
dt = ur (S(t), t) . (5.4)

To close the one-dimensional axisymmetric model, we require additional
boundary conditions for both nutrient concentrations and the radial fluid
velocity. Regarding the nutrient concentration in the biofilm, we note that
the leading edge of the biofilm is rounded by a meniscus, where the height
changes over a region in r with O(ε) size [148]. This meniscus is not captured
under the original thin-film scaling. With this in mind, close to the contact
line we instead consider a re-scaling of the original variables,

(r, z) =
(
S(t) + εRbr

†, εRbz
†
)
, (ur, uz) =

(
εχRbur

†, εχRbuz
†
)
. (5.5)

With this scaling, the leading-order balance for the flux boundary condition
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(4.20) becomes (dropping daggers)

∂gb

∂z
= ∂gb

∂r

∂h

∂r
on z = h. (5.6)

At the contact line, the left-hand side of (5.6) vanishes due to (4.38b), and in
general h can depend on r. The boundary condition on the biofilm nutrient
concentration is therefore

∂gb

∂r

∣∣∣∣∣
(S(t),t)

= 0. (5.7)

To close the momentum equation (5.1f), we impose that the biofilm
experiences zero radial stress at the contact line, that is σrr (S(t), t) = 0.
Using the radial component of (4.57) to eliminate pressure from the radial
stress (4.10a), we find that

σrr = 2ur
r

+ 2
r

∂

∂r
(rur)− 2 (1 + Ψm)φngb + γ∗

r

∂

∂r

(
r
∂h

∂r

)
. (5.8)

Setting this to zero at the contact line, we obtain the condition

4 ∂ur

∂r
+ 2ur

r
= 2 (1 + Ψm) φ̄ngb −

γ∗

r

∂

∂r

(
r
∂h

∂r

)
, on r = S(t). (5.9)

We note that (5.9) contains the depth-averaged cell volume fraction term. For
h (S(t), t) 6= 0, the condition (5.9) arises from depth-averaging of the radial
stress (5.8). If h (S(t), t) = 0, L’Hôpital’s rule gives

lim
h→0

φ̄n = lim
h→0

1
h

∫ h

0
φn dz = φn|z=0 , (5.10)

and hence (5.9) still applies.

For the nutrient concentration in the substratum, it is natural to impose
the no-flux condition

∂gs

∂r

∣∣∣∣∣
(R,t)

= 0 (5.11)

at the boundary of the Petri dish. We require a solution to (5.1c) and (5.1d)
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such that gs and its flux are continuous at the contact line, yielding the
conditions

lim
r→S(t)−

gs = lim
r→S(t)+

gs, lim
r→S(t)−

∂gs

∂r
= lim

r→S(t)+

∂gs

∂r
. (5.12)

The equations (5.1), together with the boundary conditions (5.3), (5.4),
(5.7), (5.9) and (5.11), continuity conditions (5.12), and initial conditions
(5.2), form the one-dimensional axisymmetric model which we are to solve.

5.1.2 Parameters
To obtain appropriate values for the dimensionless parameters, we require
estimates for all dimensional quantities in equations (4.29), (4.31), (4.33)
and (4.34). In lieu of an accurate experimental measurement, we assume
that the thin-film parameter is ε = 0.1. This is the same value used in the
extensional flow model of Ward and King [120], and signifies that the biofilm
thickness is an order of magnitude smaller than its radius. Accordingly, we
also assume the initial biofilm height is H0 = 0.1.

As in §3.1.2, we can determine many parameters directly from the ex-
perimental design. For example, the mean initial biofilm radius across the
thirteen experiments was Rb = 2.875 mm. The radius of the medium on
which the biofilms were grown was Rp = 41.5 mm [2], giving R = 14.4. We
also have G = 9.24× 10−5 g ·mm−2 and Ds = 4.01× 10−2 mm2 ·min−1, since
(3.6) and (3.7) still apply for the extensional flow model.

Since the substratum and biofilm are made of different materials, we
do not necessarily expect Db = Ds. Indeed, a review of experimental mea-
surements of diffusivity in biofilms by Stewart [152] found that the the
mean effective diffusivity in a microbial biofilm is 0.24Daq, where Daq =
4.04× 10−2 mm2 ·min−1 is the diffusivity of glucose in water [136]. Our es-
timate is thus Db = 9.70× 10−3 mm2 ·min−1. This is of the same order of
magnitude as an estimate for a S. cerevisiae floc, which Vicente et al. [153]
gave as Db = 6.6× 10−3 mm2 ·min−1. Vicente et al. [153] also estimated the
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mass transfer coefficient of glucose in yeast to be Q = 2.92× 10−3 mm ·min−1,

and we adopt this as our estimate.

In experiments, it is difficult to obtain measurements for the ECM pro-
duction rate, ψm, cell death rate, ψd, and surface tension coefficient, γ. Using
the observation that extracellular material makes up approximately 10% of
mature S. cerevisiae mats by volume, we assume a dimensionless value of
Ψm = 1/9. Since the cell viability assay in Figure 1.6 shows that the propor-
tion of dead cells at the end of the experiment is low, we assume Ψd = 0.
Finally, we assume γ∗ = 0 when comparing the extensional flow model with
experiments. This is because sliding motility is associated with weak adhesion
and low friction on the substratum [150], and therefore we expect the effect
of surface tension to be negligible.

It remains to estimate the cell production rate, ψn, and nutrient con-
sumption rate, η, which are difficult to measure experimentally. We obtain
estimates by fitting these parameters to experimental data. We find that
ψn = 12.1 mm2 · g−1 ·min−1 and η = 3.7× 10−3 min−1 produces a local mini-
mum in the sum of squared differences between a numerical solution and the
biofilm size data in Figure 2.7. Using these values completes our parameter
estimation, and enables us to compute the dimensionless model parameters.
These estimates are listed in Table 5.1. The constant T is the dimensionless

Table 5.1: Dimensionless parameters for the thin-film extensional flow model,
estimated from yeast (S. cerevisiae) biofilm experiments.

Parameter Value Parameter Value

H0 0.1 D 4.34
Ψm 0.111 Pe 0.953
Ψd 0 Υ 3.15
R 14.4 Qb 8.65
T 15.9 Qs 2.09
γ∗ 0
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experimental time, computed using the time scale in (4.29). Importantly, all of
the constants in right-hand column of Table 5.1 are O(1). This indicates that
the extensional flow scaling is appropriate for our yeast biofilm experiments.

5.2 Numerical Solutions

To compute numerical solutions to the one-dimensional axisymmetric model
(5.1), it is convenient to make a change of variables that maps the biofilm and
unoccupied Petri dish domains to the unit interval. Following Crank [154],
this involves defining

ξ = r

S(t) , ξo = r − S(t)
R− S(t) , and τ = t. (5.13)

so that the biofilm always inhabits ξ ∈ [0, 1], and the interval ξo ∈ [0, 1]
represents the remainder of the Petri dish not occupied by the biofilm. We
then use a Crank–Nicolson scheme to discretise (5.1). For all non-linear terms,
we linearise using data from the previous time step. At each time step, we
solve the governing equations in the same order as they are derived in (5.1).
When solving for the nutrient concentration in the substratum, we use data
from the previous time step as an initial guess for gs (S(t), t) at the current
time step. We then solve both (5.1c) and (5.1d), and use Newton’s method
to correct the initial guess, and ensure that the first spatial derivative of
gs is continuous at r = S(t), which corresponds to ξ = 1 and ξo = 0. We
compute solutions using an equispaced grid with ∆ξ = ∆ξo = 1.25×10−4 and
∆τ = 9.93× 10−5 ≈ 1× 10−4, which ensures convergence with grid spacing
and time step size. Further details on the numerical method are provided in
Appendix B.2.

125



Chapter 5. Extensional Flow Regime

5.2.1 Comparison with Experiments
To facilitate comparison with experiments, we compute the solution to the
one-dimensional axisymmetric model with the parameters given in Table 5.1.
We then compare the numerical contact line position with the measured radius
of the experimental S. cerevisiae mats. These results, depicted in Figure 5.1,
reveal excellent agreement between the numerical solution and experimental
data. The extensional flow model can therefore explain the biofilm expansion
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Figure 5.1: A comparison between experimental data and the numerical
solution to the thin-film extensional flow model with parameters listed in
Table 5.1. (a) Comparison of numerical contact line position (dashed curve),
with data from the thirteen experiments. Dots indicate the mean data,
and error bars indicate the experimental range. (b) Instantaneous biofilm
expansion speed ur(S(t), t) in the numerical solution.

speed observed in experiments. Furthermore, by relaxing the assumption
of constant expansion speed used in Chapter 3, the extensional flow model
provides an even better fit to experimental data than the reaction–diffusion
model. Instead of constant-speed expansion, the velocity profile in Figure 5.1b
resembles the experimental results of Srinivasan, Kaplan, and Mahadevan
[127] for B. subtilis biofilms, featuring an initial period of acceleration followed
by a deceleration. A likely explanation of the acceleration observed early in
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biofilm growth is that cells initially proliferate in nutrient-rich conditions.
With abundant nutrients, both existing and newly-produced cells are able to
proliferate, accelerating expansion. However, as time passes nutrients become
depleted in the centre of the colony, as Figures 5.2e and 5.2f show. Reduced
nutrient availability decreases the ability of cells to proliferate, resulting in
the decrease in net biofilm growth illustrated in Figure 5.2d, and the decrease
in fluid velocity observed in Figure 5.2b. This decrease in biomass creation
and fluid velocity slows the expansion of the colony.

The distribution of nutrients also influences the shape a biofilm attains
as is expands. As Figure 5.2a shows, our model predicts that the biofilm
will expand vertically and radially when nutrients are abundant. However,
biomass production occurs mostly at the leading edge when nutrients deplete
in the centre of the biofilm, as Figure 5.2d illustrates. This causes the biofilm
to stop thickening, and subsequent expansion is in the radial direction only.
Furthermore, this corresponds to the radial fluid velocity profile (Figure 5.2b)
within the biofilm becoming more localised to the leading edge. The model
even predicts that the height at the centre of the biofilm will begin to decrease,
which occurs when radial advection exceeds the net fluid production. Our
results are qualitatively similar to results of other thin-film models [52, 127,
129]. In these models, nutrient limitation drives a transition from bulk growth
to an edge regime, in which growth only occurs close to the contact line.

Finally, Figure 5.2c shows that the cell volume fraction quickly settles
towards φn = 0.9 in our numerical solutions. This is expected, because we
used the observation that mature yeast mats contain approximately 90% living
cells by volume to estimate Ψm. We also assumed Ψd = 0, which prevents
existing cells from degrading to extracellular material.
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Figure 5.2: The numerical solution with the parameters listed in Table 5.1.
Solutions are plotted for t ∈ [0, 15.9], and r ∈ [0, 14.4], at ten equispaced
time intervals. Dashed curves indicate initial conditions. Arrows indicate the
direction of increasing time.
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5.2.2 The Effect of Model Parameters on Biofilm
Size

In §5.2, we considered one set of parameters relevant to the S. cerevisiae
mat formation experiments. However, biofilms can grow in vastly different
ways depending on the microbial species and environmental conditions. For
example, although the ECM fraction is approximately 10% in S. cerevisiae
mats, it is commonly 50–90% in bacterial biofilms [54], and can be as high
as 95–98% [21, 55]. Since some bacterial biofilms are also hypothesised to
expand by sliding motility [50], we aim to predict biofilm growth in different
conditions.

To investigate the effect of deviations from our experimental parameters
on expansion, we perform a local sensitivity analysis. For each set of solutions,
we use the default parameters given in Table 5.1, and vary one parameter at a
time over a realistic range. We then compute numerical solutions and measure
the predicted biofilm size after five days of growth. This enables us to isolate
the effect of each parameter on biofilm size. Of the dimensionless parameters,
we found that the Petri dish size R and surface tension coefficient γ∗ had
negligible effect on the biofilm size. Sensitivity results for other parameters are
shown in Figure 5.3. In Figure 5.3a, we vary the dimensional cell production
rate ψn, which is otherwise scaled out of the dimensionless model. When
changing ψn, we update the values for D, Pe, and T, all of which depend on
ψn. This enables us to directly compare the effects of cell production rate,
ECM production rate, and cell death rate.

Overall, a vast range of behaviour is possible while keeping dimensionless
parameters within one order of unity. Figures 5.3a and 5.3b describe how
fluid production and cell death affect expansion speed. As expected, higher
rates of fluid (either living cells or ECM) production result in larger biofilms.
However, unlike the production of ECM, the production of new cells facilitates
increased cell proliferation in the future, and therefore cell production rate is a
stronger determinant of size than ECM production rate. This further justifies
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Figure 5.3: The effect of model parameters on predicted biofilm radius, S(T ),
after five days of growth. In each solution, we use the initial conditions (5.2).
When held constant, all parameters (excepting T ) are as in Table 5.1.
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using the extensional flow model to investigate sliding motility, in which cell
proliferation primarily drives expansion. In addition, Figure 5.3b shows that
increasing the cell death rate decreases biofilm size, which is expected because
fewer living cells are subsequently available to proliferate.

The remaining plots in Figure 5.3 show how the dimensionless parameters
affect expansion speed and final size. The effect of nutrient diffusion and
consumption is revealed in Figure 5.3c. Increasing the nutrient diffusion
coefficient, D, will result in more uniform nutrient concentrations across the
Petri dish than seen in Figures 5.2e and 5.2f. This promotes thickening
of the biofilm as opposed to radial expansion. In addition, increasing the
nutrient consumption rate, Υ, results in larger quantities of nutrient being
required to produce a new cell, thereby slowing expansion. The Péclet number
indicates how readily nutrients advect radially with the extracellular fluid.
Larger values of Pe increase nutrient supply to the proliferating rim, enabling
faster expansion. However, the slender biofilm and substratum geometries
are such that nutrient availability depends more strongly on uptake from
the substratum than advection in the biofilm. Therefore, the Péclet number
has a weaker effect on expansion speed than the nutrient depletion and
uptake rates, as Figure 5.3d illustrates. Larger values of nutrient depletion
rate, Qs, decrease nutrient availability to the cells, which slows expansion.
Conversely, increasing nutrient uptake rate, Qb, aids cell production, because
more nutrients become available for consumption. Finally, Figure 5.3e shows
that thinner biofilms tend to expand faster than thicker ones. This is because
cell proliferation causes radial expansion in thin biofilms, whereas in thicker
biofilms cell proliferation proportionately favours vertical growth.

Overall, in the extensional flow regime several physical parameters affect
the ability of cells (particularly those close to the leading edge) to proliferate,
and hence expansion speed. This contrasts with the reaction–diffusion model
of Chapter 3, in which the expansion speed depended uniquely on a single
parameter, the diffusion ratio. These findings are relevant to clinical settings,
where expansion speed correlates with the invasiveness of infection. Our
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model describes environmental conditions that result in decreased expansion
speed.

5.2.3 Ridge Formation and Surface Tension Ef-
fects

In addition to the size, our model also predicts the shape a growing biofilm will
attain. Although not observed in our S. cerevisiae mat formation experiments,
some bacterial biofilms [127] and yeast colony biofilms [46] develop a ridge
structure. An example of this in yeast is shown in Figure 5.4. To observe

S-D-lactoylglutathione, and GLO2 and GLO4, which
convert this intermediate to D lactate and glutathione,
are also upregulated (2-fold and 1.8-fold respectively).

Stress responses, the pentose phosphate pathway and
redox states
Thirty-seven genes with roles in various stress responses
were upregulated in aerial cells, compared to only seven
genes found upregulated in roots (Table 1). Thirteen of
these stress-response related genes in aerial cells
encoded proteins involved in protein folding or refold-
ing. Another four genes (GRE1, SIP18, STF2 and
YJL144W) are involved in desiccation-rehydration pro-
cesses, three genes (MSH2, PHR1 and ULP2) in DNA re-
pair and five genes in oxidative stress defense (CTT1,
GTO1, TRR2, RNY1 and GPX1). Five of the seven genes
upregulated in root cells are involved in oxidative stress
response (GPX2, TRR1, SRX1, FRM2 and CCS1).
Genes for alternative isozymes of transketolase, transaldo-

lase, 6-phosphogluconolactonase and 6-phosphogluconate

dehydrogenase involved in PPP were upregulated in aerial
(TKL2, NQM1, SOL4 and GND2) and root (TKL1, SOL3
and GND1, the last two genes 1.8-fold and 1.7-fold respect-
ively) cells (Fig. 5), indicating that PPP output is shifted
towards precursors of amino acid/nucleotide biosynthesis in
roots and towards production of NADPH (and thus redox-
state balancing) in aerial cells [17]. The RKI1 gene for
ribose-5-phosphate ketol-isomerase, which generates im-
portant precursors of amino acid biosynthesis from the pen-
tose phosphate pathway [18], was also upregulated in roots.
This finding fits with the observation of upregulated amino
acid metabolism in roots and increased stress responses of
cells in aerial regions.

Autophagy in aerial cells
Autophagy genes (11 genes) are upregulated in aerial
cells compared with root cells. 2PE-CM of cross-
sections of colonies of BR-F producing cytosolic or per-
oxisomal GFP-tagged proteins showed accumulation of
GFP in vacuoles of aerial cells (a sign of active autoph-
agy delivering cytosolic proteins/peroxisomes to the
vacuole for degradation) (Fig. 3c). No GFP was observed
in the vacuoles of root cells. Active autophagy in aerial
cells was confirmed by western blot of aerial/root cells
of an Arg1p-GFP-producing strain; the tagged cytosolic
protein is degraded to free GFP in the vacuoles only in
aerial cells. This observation fits with the transcripto-
mics data and indicates that autophagy is active in aerial
cells but not in the root cells.

Expression of alternative isozymes indicates different
glucose levels in root and aerial parts
As shown in Fig. 5, isogenes of different metabolic en-
zymes and some transporters are differently expressed in
aerial and root samples. Isogenes that are more highly
expressed in carbon-limited (low glucose) conditions,
such as GND2, TKL2, NQM1, ACS1, HXK1, PDC6,
ALD2, ALD3, GAL2, HXT5, HXT6, HXT10, and HXT14,
are upregulated in aerial samples and those that are
more highly expressed on fermentable carbon sources,
such as GND1, TKL1, SOL3, ACS2, HXK2, PDC1, and
ACO2, are upregulated in root samples. As colonies were
grown from the outset on respiratory GMA agar without
glucose, potential differences in intracellular glucose/
sugar levels could be due to differences in cell subpopu-
lation metabolisms. Some glucose and/or other sugars
can originate from polysaccharides of the extracellular
matrix synthesized from glycerol earlier in colony devel-
opment (ECM starts to be produced within ~ 30 h old
colonies; [3]). In addition, observed isogene expression
differences are consistent with an upregulation of gluco-
neogenesis that provides glucose to root cells and an
upregulation of glycolysis that degrades glucose in
aerial cells.

Fig. 6 Glycogen and trehalose content in colonies. a Presence of
glycogen (in brown) in 3-day-old BR-F colonies. Thin cross-sections
of colonies were stained and observed using transmitted light. b
Glycogen and trehalose content in aerial cells from wt, gip2Δ, pig1Δ
and pig2Δ colonies. The mean of three biological and 3-4 technical
replicates each is shown ± SD, ***p < 0.0001

Maršíková et al. BMC Genomics  (2017) 18:814 Page 9 of 16

Figure 5.4: A biofilm of the BR-F wild strain of S. cerevisiae, displaying
ridge formation. Image reproduced from Maršíková et al. [46] under the
Creative Commons Attribution 4.0 International License (CC BY 4.0), https:
//creativecommons.org/licenses/by/4.0/.

ridge formation in our model, we compute a numerical solution with the
experimental parameters given in Table 5.1, except with D = 1.5, Υ = 10,
and Pe = 10. Compared to the experimental parameters, this combination
of decreased nutrient diffusion, and increased nutrient consumption and
advection leads to faster nutrient depletion behind the proliferating rim. Cell
proliferation then becomes concentrated close to the leading edge, which
in conjunction with increased advection of mass outwards from the biofilm
centre, creates the noticeable ridge seen in Figure 5.5a. To quantify ridge
formation, we compute the normalised ridge height

Ir(t) = max
r∈[0,S(t)]

h(r, t)
h(0, t) , (5.14)
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Figure 5.5: The numerical solution with D = 1.5, Υ = 10, and Pe = 10, with
other parameters as in Table 5.1. (a) Biofilm height. (b) Normalised ridge
height (solid line), compared with the experimental case (dashed line).

and compare with the experimental case. Figure 5.5b shows the normalised
ridge height increasing faster than the base solution with experimental param-
eters. Although we do not investigate the mechanisms of ridge formation in
detail, our model shows that interplay between sliding motility and nutrient-
limited growth can initiate ridge formation. Importantly, this can occur
without the need to invoke other mechanisms such as osmotic swelling.

Finally, we investigate the effect of the surface tension coefficient on the
biofilm shape. We achieve this by computing numerical solutions with the
parameters as in Figure 5.5, varying the surface coefficient over the range
γ∗ ∈ [0, 2]. These results are shown in Figure 5.6. We observe that increasing
the surface tension coefficient reduces the extent of the ridge, and that γ∗ = 2
is sufficient to prevent ridge formation. As surface tension appears only in the
momentum equation (5.1f) and boundary condition (5.9), we expect the fluid
velocity profile to explain this behaviour. Figure 5.6b shows that increasing
γ∗ decreases the radial velocity near the centre of the biofilm. This decreases
movement of fluid and nutrients towards the leading edge of the biofilm,
thereby inhibiting ridge formation.
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Figure 5.6: Numerical solutions with parameters (excepting γ∗) as in Fig-
ure 5.5, plotted for γ∗ ∈ [0, 2], at increments of γ∗ = 0.2.
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5.3 Summary

In this chapter, we used the extensional flow regime of the thin-film model
derived in Chapter 4 to investigate the hypothesis that sliding motility is
the mechanism by which yeast biofilms expand. We considered the one-
dimensional axisymmetric form of the model, which is sufficient to capture
the speed of expansion and biofilm profile. Using the experimental design, we
estimated all model parameters except ψn, the cell production rate, and η, the
nutrient consumption rate. Fitting these two parameters to the experimental
data for biofilm size, we obtained excellent agreement between the model and
data. Since all estimated parameters were O(1), we concluded that sliding
motility is a potential explanation for yeast biofilm expansion. These results
improved on the reaction–diffusion model proposed in Chapter 3, as they
predicted a non-constant expansion speed.

Comparison with experiments established that our extensional flow model
can predict yeast biofilm expansion. Based on this finding, we used the model
to investigate the effect of deviations from the experimental parameters on
expansion speed. We found that the cell production rate had the strongest
positive effect on biofilm size, which was expected as sliding motility is a form
of passive expansion driven by cell proliferation. In addition, we found that
increasing nutrient availability, especially close to the leading edge, enabled
faster expansion. This could be achieved by increasing the nutrient uptake
rate, decreasing the rates of nutrient diffusion, depletion and consumption,
or decreasing the initial biofilm thickness. This sensitivity analysis revealed
mechanical effects that inhibit or enhance biofilm growth.

Using different parameters, our extensional flow model predicted ridge
formation close to the leading edge. We did not observe ridge formation
in S. cerevisiae experiments, but it has been observed for other microbial
colonies. Although it had negligible effect on biofilm size, we found that the
surface tension coefficient, γ∗, influenced the biofilm shape. Larger values
of γ∗ decreased the radial velocity close to the centre of the biofilm, which
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inhibited ridge formation.
Analysis of the axisymmetric form of our thin-film extensional flow model

for sliding motility showed that the model can explain the speed of expansion
and biofilm shape observed in experiments. The full two-dimensional model
derived in §4.2 provides an opportunity for future work. Since the model is
more complicated than the reaction–diffusion system analysed in Chapter 3,
we have not yet considered whether the extensional flow model can predict
petal formation. In the future, we could investigate the linear stability of
one-dimensional model solutions to azimuthal perturbations. We could then
combine these results with numerical solutions to the two-dimensional model
to determine whether sliding motility is a possible explanation for the floral
morphology.
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Chapter 6

Lubrication Regime: Strong Biofilm–
Substratum Adhesion

In this chapter, we use the lubrication model to investigate growth of biofilms
that adhere strongly to the substratum, where surface tension and pressure
are assumed large. Our analysis takes a similar form to Chapter 5, in which
we compute numerical solutions to the axisymmetric model and investigate
the effect of parameters on biofilm size and shape. In the lubrication regime,
the axisymmetric model is two-dimensional. This is because the leading-order
cell volume fraction, φn, and radial fluid velocity, ur, depend on z. This was
not true in the extensional flow regime. Although the two-dimensional model
enables us to predict the spatial variation in φn and ur, it is computationally
expensive. Since φn exhibits weak dependence with z, we also consider a
simplification to the model where we assume that cell volume fraction is
independent of z. The resulting one-dimensional model produces qualitatively
similar results to the full model, and represents an alternative that is more
analytically tractable and computationally efficient.
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6.1 Two-Dimensional Axisymmetric Model

To investigate the effect of biofilm mechanics, we analyse the thin-film models
in axisymmetric form. Unlike the extensional regime considered in Chapter
5, in the lubrication regime the leading-order cell volume fraction and fluid
velocities depend on z. Hence, when we neglect azimuthal dependence, the
full lubrication model (4.85) reduces to the two-dimensional axisymmetric
model
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The system (6.1) constitutes the lubrication model for the biofilm height
h(r, t), cell volume fraction φn(r, z, t), fluid velocity uz(r, z, t), and nutrient
concentrations gs(r, t) and gb(r, t).We compute solutions to this model subject
to appropriate regularisation, initial conditions, and boundary conditions,
which we detail below.
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6.1.1 Regularisation

Much like in the extensional flow regime, we are interested in computing
numerical solutions in which there is non-zero radial velocity close to the
biofilm–substratum interface, which enables the biofilm to expand. However,
an important assumption in the lubrication regime is that the biofilm adheres
strongly to the substratum. In the general slip conditions (4.17), this involves
assuming that the adhesion strength of each phase λα →∞, which gives rise to
the standard no-slip condition on the biofilm–substratum interface. However,
applying the no-slip condition means that the contact line cannot move,
and hence the biofilm cannot expand. This apparent paradox is commonly
encountered in models involving a generalised lubrication equation [120, 127,
155–157], and is resolved by applying a suitable regularisation.

One method for dealing with moving contact lines is to introduce a
precursor film [156]. This is a thin layer of fluid with thickness b� 1 existing
ahead of the biofilm front. Physically, this represents the characteristic scale of
surface roughness in the agar [155]. Following Ward and King [120], we adopt
this precursor film to regularise the model. We assume that the precursor
layer consists entirely of passive fluid (no cells), and that nutrient uptake
or consumption does not occur in the precursor film. Mathematically, this
involves modifying the model equations to extinguish the relevant terms
wherever h ≤ h∗, for some h∗ ≥ b [156]. We write the regularised model as
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where H is the Heaviside step function. The formulation (6.2) assumes that
cells are not present without sufficient biofilm thickness to support them,
and that the biofilm cannot take up nutrients in regions with no cells. The
constant h∗ represents the dimensionless thickness of a single cell. Given
that the diameter of yeast cells is approximately 4 µm, and the characteristic
biofilm height is approximately 2 mm, the value h∗ = 0.002 is appropriate.
Computing numerical solutions of the lubrication model then involves solving
the regularised system (6.2), subject to appropriate initial and boundary
conditions.

6.1.2 Initial and Boundary Conditions

We obtain the first initial conditions from the observation that the Petri
dish is initially filled uniformly with nutrients, and that no nutrients are yet
present in the biofilm. For h(r, 0), we require a function such that there is
a defined region with h = b ahead of the biofilm, and that relevant higher
derivatives of h with respect to r are continuous throughout the entire domain.
For this purpose, we modify the parabolic initial condition of the extensional
flow case in the same way as Ward and King [120]. Finally, for the cell volume
fraction φn(r, z, 0), we choose a polynomial form such that φn = 0 in the
precursor film, and that the first derivatives of φn with respect to r and z are
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continuous throughout the domain. The initial conditions are then

h (r, 0) = b+ (H0 − b)
(
1− r2

)4
H (r − 1) , (6.3a)

φn(r, z, 0) =
(
3z2 − 2z3

) (
1− 3r2 + 2r3

)
H (r − 1) , (6.3b)

gs (r, 0) = 1, (6.3c)

gb (r, 0) = 0, (6.3d)

which sets the initial contact line position at r = 1, and satisfies h = b for
r ≥ 1 and φn = 0 for r ≥ 1.

For the boundary conditions, as with the extensional flow regime we assume
that we have radial symmetry at r = 0 in all of the variables. Therefore, we
obtain the conditions
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In addition, just as with the extensional flow regime, we also assume that the
centre of the biofilm is fixed, and that fluid cannot cross r = 0. The radial
component of the fluid velocity must then be zero there, that is ur (0, z, t) = 0.
Using the explicit form (4.74a), this gives rise to an additional boundary
condition for the biofilm height,
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To remove the singularity as r → 0, we expand (6.5), which gives
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For this to be well defined, we require this limit to exist and be finite. Using
L’Hôpital’s rule, we obtain (where primes denote differentiation)
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r→0

rh′′(r)− h′(r)
r2 = lim

r→0

rh′′′(r) + h′′(r)− h′′(r)
2r = h′′′(r)

2 (6.7)

141



Chapter 6. Lubrication Regime

and therefore we can re-write the boundary condition (6.5) as
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= 0. (6.8)

At the edge of the Petri dish, we impose no-flux conditions for the nutrient
concentrations in both the substratum and biofilm. Owing to the precursor
regularisation, we also have that the biofilm height is fixed at h = b, and
that the precursor film has a constant height over its extent. This yields the
conditions
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We now have a closed, axisymmetric system of model equations (6.2) that
we can solve subject to the initial conditions (6.3), and boundary conditions
(6.4), (6.8) and (6.9).

6.1.3 Numerical Solutions

We now undertake numerical solution of the regularised axisymmetric model
in the lubrication regime. A major task in this process is solving the fourth-
order generalised lubrication equation (6.2a) for the biofilm height. We solve
this equation using a non-linear Crank–Nicolson scheme [158]. To validate the
scheme and ensure convergence, we compare results with the no-slip model of
Ward and King [120], in which cell volume fraction is considered constant. We
then proceed to solving the full two-dimensional axisymmetric model. The
main difficulty here arises in solving (6.2b) for the cell volume fraction. Since
this equation is two-dimensional, the numerical method is computationally
expensive. Furthermore, large gradients in φn emerge in thin regions close to
z = 0. A large number of grid points in the thin region is required to resolve
these gradients, which otherwise introduce spurious numerical oscillations
into the solution. This motivates our work on a one-dimensional simplified
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model in §6.2.

Constant Cell Volume Fraction

Before solving the full two-dimensional lubrication model (6.2), we first
consider a simplified case in which φn is a prescribed constant, instead of
a function of space and time. Although this is not necessarily the case in
the full model, our motivation for computing these solutions is two-fold.
First, this regime enables comparison to the results of Ward and King [120],
who computed numerical solutions in Cartesian geometry. This provides a
means of investigating the effect of radial geometry on the solution. Secondly,
these solutions will enable us to validate the numerical method used to solve
the generalised lubrication equation for h, and ensure convergence of the
numerical method.

Re-writing the no-slip model of Ward and King [120] in radial geometry,
we obtain
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This is of the same form as the generalised lubrication equation (6.2a), except
Ward and King [120] use the source term

J = H (h− h∗)
[

1√
σ

tanh
(√

σh
)
− ρh

]
, (6.11)

where σ = Υ/ε2, and ρ is a parameter that encapsulates cell death. To
compare our radial model with the results of Ward and King [120], we
compute a numerical solution to (6.10) with (6.11). Our numerical method is
a fully non-linear Crank–Nicolson scheme incorporating Newton iteration for
non-linear terms in h. We found this method to produce more accurate results
than a linearised Crank–Nicolson scheme. Therefore, throughout this chapter
we will use this method whenever the generalised lubrication equation (6.2a)
arises. Full details on the numerical scheme, including convergence tests with
space and time, are provided in Appendix B.3.1.
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In the numerical solution, we use the same values of ρ, σ, and γ∗ as
Ward and King [120], and found that H0 and h∗ had negligible effect on the
solution. This solution is shown in Figure 6.1. The solution develops in a
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(a) Biofilm height, h(r, t).
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Figure 6.1: Numerical solution of (6.10), with ρ = 0.2, σ = 24.995, γ∗ = 1,
h∗ = 0.002, and b = 1×10−4. The initial condition is h(r, 0) = b+(H0−b)(1−
r2)4H(r−1), and the solution is computed for r ∈ [0, 10] and t ∈ [0, 180]. The
profiles are plotted at increments of t = 10, where the dashed curve denotes
the initial conditions and the arrow indicates the direction of increasing time.

similar way to Figure 4 in the paper by Ward and King [120]. Initially, the
biofilm grows in both the radial and vertical directions, before the height in
the centre of the biofilm settles to h = 1. At the leading edge, a ridge forms
and the biofilm appears to approach a constant expansion speed as its radius
increases. Therefore, numerical solutions in radial geometry produce the same
qualitative behaviour as the planar solutions of Ward and King [120].

Full Model

We now proceed to solving the full two-dimensional multi-phase model in the
lubrication regime, (6.2)–(6.4), (6.8) and (6.9). Compared to the model of
Ward and King [120], our model introduces a depleting nutrient supply in the
substratum, and tracks how the volume fractions of cells and extracellular
fluid change with space and time. As a result, the numerical method is more
complicated. Most notably, the equation for the cell volume fraction (6.2b)
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needs to be solved on the moving two-dimensional domain 0 < r < R, and
0 < z < h(r, t). For computational convenience, we make a change of variables
to map the domain to a rectangle with unit height. We then use a Crank–
Nicolson scheme to solve (6.2b), and solve (6.2e) and (6.2f) for the nutrient
concentrations using similar methods to those used for the extensional flow
regime. Where necessary, we compute the integrals appearing in (6.2c), (6.2d)
and (6.2f) using the trapezoidal rule. Full details of the numerical scheme are
provided in Appendix B.3.2.

We first select a default set of model parameters that we will use throughout
the numerical solutions in the lubrication regime. In all solutions, we choose a
dimensional cell production rate of ψn = 50 mm2 · g−1 ·min−1. As the surface
tension coefficient is difficult to determine from experiments, we use γ∗ = 1.
We also choose R = 10 and T = 50, which provide suitable length and time
scales. All other dimensional parameters are the same experimental estimates
from the extensional flow model, described in §5.1.2. Although we do not
believe that the lubrication regime is directly applicable to S. cerevisiae
experiments, this choice of values facilitates comparison with the results of
Chapter 5 and gives O(1) dimensionless parameters. We list these parameters
in Table 6.1. The numerical solution to the two-dimensional axisymmetric

Table 6.1: Dimensionless parameters for the thin-film lubrication model.

Parameter Value Parameter Value

H0 0.1 D 1.05
Ψm 0.111 Pe 3.94
Ψd 0 Υ 3.15
R 10 Qb 8.65
T 50 Qs 2.09
γ∗ 1 h∗ 0.002

model with these parameters is shown in Figure 6.2 and 6.3.
Comparing Figure 6.2 to the results in Figure 6.1 reveals how nutrient
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Figure 6.2: Numerical solution of the full thin-film lubrication model, with
ψn = 50, γ∗ = 1, h∗ = 0.002, and b = 1× 10−4. The initial conditions are (6.3)
and the solution is computed with Nr = 2001, Nz = 1001, and Nt = 40001,
for r ∈ [0, 10] and t ∈ [0, 50]. Where visible, the dashed curves represent the
initial conditions, and the arrows indicate the direction of increasing time.
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(a) Cell volume fraction, φn(r, z, T ).

(b) Fluid velocity uz(r, z, T ).

Figure 6.3: Numerical solution for φn(r, z, T ) and uz(r, z, T ) in the full thin-
film lubrication model.
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limitation and non-constant cell volume fraction affect the evolution of the
biofilm. A notable change is that here we observe a non-constant expansion
speed, which is caused by nutrient limitation. Initially, biofilm expansion is
comparatively fast due to the presence of abundant nutrients. Expansion then
decelerates as nutrients deplete. This behaviour is to be expected, because
in our model the net biofilm growth, given by the source term J(r, t), is
proportional to gb. As Figures 6.2d and 6.2e illustrate, both of these decrease
with time. In addition to the decelerating expansion, Figure 6.2a shows that
nutrient distribution affects the biofilm shape. With the depleting nutrient,
the biofilm grows faster in the vertical direction, and attains a thicker shape
to that seen in Figure 6.1a. A possible reason for this is that the source term
in (6.1a) does not admit an equilibrium height, whereas (6.11) guarantees
that h(0) = 1 is eventually attained.

Figure 6.3a illustrates the spatial dependence of the cell volume fraction
φn at t = 50. The cell volume fraction distribution shown in Figure 6.3a
depends on the radial velocity component, ur, which in axisymmetric geometry
becomes

ur = −γ∗z
(
z

2 − h
)

∂

∂r

[
1
r

∂
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(
r
∂h

∂r

)]
. (6.12)

As we have assumed no-slip on z = 0, in Figure 6.3a we observe a region
where φn = 0 close to z = 0. This occurs because we initially assume φn = 0
in the precursor film, and the fluid velocity components ur and uz ensure
that no cells are present close to z = 0. Indeed, the radial velocity (6.12)
is parabolic in z, which matches the shape of the region for which φn = 0.
The cell volume fraction profile in Figure 6.3a is therefore consistent with the
mathematical model. However, we cannot confirm whether such a profile will
arise in experiments, because our experiments correspond to the extensional
flow regime, and not the lubrication regime.

In the full lubrication model, the vertical velocity component uz also
depends on z. On the free surface z = h, this velocity indicates regions of the
biofilm that are changing shape. As equation (6.2d) suggests, this velocity
depends on the local cell volume fraction, nutrient concentration, and the
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fourth-order surface tension term. Therefore, the velocity increases due to
local production of cells, or large values of surface tension. In Figure 6.3b, we
observe that the largest velocities occur on the free surface close to the contact
line. One possible explanation for this is that the nutrient concentration is
higher close to the contact line than in the centre of the biofilm, as Figure 6.2d
showed. However, since cell volume fraction is low near the contact line, the
high velocity there is unlikely to be driven by cell proliferation. This suggests
that surface tension plays an important role in driving biofilm expansion.

6.2 One-Dimensional Simplified Model

In Figure 6.3a, we observed that the cell volume fraction exhibited only slight
dependence on z, except in a thin region close to the biofilm–substratum
interface. If we assume that the cell volume fraction is independent of z,
we can reduce the two-dimensional axisymmetric model to one-dimensional
form, and eliminate uz and φ̄n from the model. Previous work by Srinivasan,
Kaplan, and Mahadevan [127] showed that a thin-film model that uses this
assumption can reproduce experimental data for bacterial biofilm growth
driven by osmotic swelling. Here, we investigate whether the same assumption
is valid for expansion driven by cell proliferation and strong adhesion.

Although the assumption loses the two-dimensional structure, the one-
dimensional simplification saves computational time, which is a major ad-
vantage. In addition, for some parameter values two-dimensional numerical
solutions require a small grid spacing close to z = 0 to avoid numerical
artefacts (results not shown). Since the one-dimensional solutions to follow
eliminate this problem, they provide a means of validating the full two-
dimensional solutions. To achieve this, we repeat the numerical results of
§6.1.3 in the following sections. The one-dimensional simplified model achieves
similar qualitative results to the full two-dimensional model.
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6.2.1 Derivation

We first derive the one-dimensional lubrication model that arises if we assume
that the cell volume fraction is independent of z. Since the equations (6.1a)
and (6.1e) for h and gs do not depend on z, they remain the same as the full
model. To obtain a z-independent equation for the nutrient concentration in
the biofilm, we can now evaluate the integral in (6.1f) explicitly. This yields
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The next step is to extend the thin-film modelling undertaken in §4.3
to derive a new equation for cell volume fraction, φn. As this derivation
does not require higher-order correction terms, we treat each variable as
leading-order, and do not return to subscript notation. To begin, we consider
the leading-order mass balance equation for living cells,
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∂r
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∂z
(uzφn) = φngb −Ψdφn, (6.14)

where ur is known explicitly by (6.12). Now that we have assumed that φn is
independent of z, it is possible to simplify the model by integrating (6.14)
across the biofilm depth. Doing so, we obtain
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0

∂φn

∂t
dz +

∫ h

0

1
r

∂

∂r
(rurφn) dz + [uzφn]h0 = (φngb −Ψdφn)h. (6.15)

Application of the no-penetration (4.38e) and kinematic (4.38f) boundary
conditions then enable us to eliminate uz, giving

∫ h

0

∂φn

∂t
dz +

∫ h

0

1
r

∂

∂r
(rurφn) dz

+φn
(
∂h

∂t
+ ur

∂h

∂r

)
= (φngb −Ψdφn)h.

(6.16)
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Applying Leibniz’s rule to the integrals in (6.16) then yields
[
∂

∂t

(∫ h

0
φn dz

)
− φn

∂h

∂t

]
+ 1
r

[
∂

∂r

(∫ h

0
rurφn dz

)
− rφnur

∂h

∂r

]

+φn
(
∂h

∂t
+ ur

∂h

∂r

)
= (φngb −Ψdφn)h.

(6.17)

Now, as we saw in the extensional flow regime, terms evaluated at the free
surface arising from Leibniz’s rule and the kinematic boundary condition
cancel. We then obtain

∂

∂t

(∫ h

0
φn dz

)
+ 1
r

∂

∂r

(∫ h

0
rurφn dz

)
= (φngb −Ψdφn)h. (6.18)

As φn is now assumed to be independent of z, we can evaluate the integrals
explicitly. Using the known form of ur (6.12), we obtain the one-dimensional
model equation for leading-order cell volume fraction,

∂

∂t
(φnh) + γ∗

3r
∂

∂r

{
rφnh

3 ∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]}
= (φngb −Ψdφn)h. (6.19)

Here, like in the extensional flow regime, we can use the total fluid mass
conservation equation (6.1a) to simplify (6.19). Multiplying (6.1a) by φn, we
can then subtract the result from (6.19), and divide by h to obtain

∂φn

∂t
+ γ∗h2

3
∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]
∂φn

∂r
= φn [gb −Ψd − (1 + Ψm)φngb] . (6.20)

The equation (6.20) is similar to the corresponding equation in the extensional
flow regime (5.1b), where in both instances the advection coefficient is given
by

1
h

∫ h

0
ur dz. (6.21)

Integrating (6.12) with respect to z confirms that this is true for (6.20).

With the leading-order equation for φn now derived, the simplified one-
dimensional lubrication model now consists of the four equations (6.1a), (6.1e),
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(6.13) and (6.20). To close the model, we apply the same boundary conditions
(6.4), (6.8) and (6.9) as the full two-dimensional model. To enable numerical
solution, we again introduce a precursor film to regularise the equations.
Similar to the two-dimensional model, we then adopt the initial conditions

h (r, 0) = b+ (H0 − b)
(
1− r2

)4
H (r − 1) , (6.22a)

φn(r, 0) =
(
1− 3r2 + 2r3

)
H (r − 1) , (6.22b)

gs (r, 0) = 1, (6.22c)

gb (r, 0) = 0. (6.22d)

Numerical solution of the model then involves solving regularised forms of
the model equations, given by

∂h

∂t
+ γ∗

3r
∂

∂r

{
rh3 ∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]}

= H (h− h∗) [(1 + Ψm)φngbh] ,
(6.23a)

∂φn

∂t
+ γ∗h2

3
∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]
∂φn

∂r

= φn [gb −Ψd − (1 + Ψm)φngb] ,
(6.23b)

∂gs

∂t
= D

r

∂

∂r

(
r
∂gs

∂r

)
−H (h− h∗) [DQs (gs − gb)] , (6.23c)

Peh ∂gb
∂t

= H (h− h∗)
{

1
r

∂

∂r

(
rh

∂gb

∂r

)
+Qb (gs − gb)−Υφngbh

−Peγ∗
3r

∂

∂r

(
rh3 (1− φn) gb

∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)])}
.

(6.23d)

Through this derivation, we have shown how the assumption that φn is
independent of z enables us to reduce the model to one spatial dimension,
as well as eliminate the variables uz and φ̄n. We now undertake numerical
solution of (6.23), subject to the initial conditions (6.22), and boundary
conditions (6.4), (6.8) and (6.9). We then compare these results to the full
numerical solutions computed in §6.1.3, to investigate the validity of the
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φn(r, t) assumption.

6.2.2 Numerical Solutions
To compute the one-dimensional numerical solution, we use similar methods
to the full two-dimensional model. Since (6.23a) and (6.23c) are unchanged
from the full model, we use the same numerical methods to solve them. For
the nutrient concentration in the biofilm, we solve (6.23d) using a similar
Crank–Nicolson method to that used to solve (6.2f). The only difference
arises in the advection term, where we no longer need to compute an integral.
Finally, we adopt an explicit upwind finite difference scheme to solve (6.23b),
completing the numerical method. As the boundary conditions are unchanged
from the two-dimensional model, we apply each in the same way. Complete
details on the numerical method are provided in Appendix B.3.3.

The numerical solution using parameters listed in Table 6.1 is presented
in Figure 6.4. This solution enables us to determine how closely the one-
dimensional results match the full model. The biofilm expansion in Figure 6.4a
is similar to the two-dimensional results in Figure 6.2a. In the one-dimensional
model, we observe slightly faster expansion than the full model. This faster
expansion is particularly noticeable early in the solution, when nutrients are
abundant and cell proliferation is comparatively rapid. However, with time
we see faster nutrient depletion in the one-dimensional case, which decreases
the expansion speed. As a result, the biofilm profiles at t = 50 are similar in
both the one-dimensional and two-dimensional cases.

The cell volume fraction profile provides a possible explanation for the
faster expansion observed in the one-dimensional model. Since we ignore
the vertical dependence in this model, we cannot capture the region close to
z = 0 where volume fraction is low. As a result, the profile in Figure 6.4b
maintains a cell volume fraction close to φn = 0.9 for a larger radius than
the equivalent plot for the full model in Figure 6.2b. Consequently, the
one-dimensional model slightly overestimates the cell volume fraction, and we
observe a corresponding increase in nutrient consumption and cell proliferation.
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Figure 6.4: Numerical solution of the 1D thin-film lubrication model, with
ψn = 50, γ∗ = 1, h∗ = 0.002, and b = 1 × 10−4. The initial conditions are
(6.22), and the solution is computed with Nr = 4001, and Nt = 80001, for
r ∈ [0, 10] and t ∈ [0, 50]. Where visible, the dashed curves represent the
initial conditions, and the arrows indicate the direction of increasing time.
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However, the biofilm size and shape in the one-dimensional model (Figure 6.4a)
remains similar to the two-dimensional result (Figure 6.2a). These results
suggest that the simplified model provides a good approximation to the full
solution. This justifies the assumption that cell volume fraction does not
depend on z, used here and by Srinivasan, Kaplan, and Mahadevan [127].

6.3 Sensitivity Analysis

Having computed numerical solutions to the two-dimensional lubrication
model and one-dimensional simplification, we now investigate the effect of
parameters on the expansion speed. We follow a similar approach as in §5.2.2,
where we perform a local sensitivity analysis with respect to our original
parameters. In each solution set, we vary one parameter at a time from those
listed in Table 6.1, and find the biofilm radius and thickness for T = 25. Like
in §5.2.2, to investigate the effect of the cell proliferation rate, we vary the
dimensional parameter ψn, which is otherwise scaled out of the model. In
doing so, we update D and Pe, which depend on ψn, and compute solutions
until T = ψn/2. We can then directly compare the effect of ψn with Ψm and
Ψd, to determine how the rates of cell production, ECM production, and cell
death respectively affect the growth. The numerical results of Figure 6.4
suggest that the one-dimensional simplified model can produce qualitatively
similar results to the full two-dimensional model. To investigate this further,
in each of Figures 6.5–6.8 we plot sensitivity results for both models, and
discuss the results below.

6.3.1 Biofilm Size

We first investigate the effect of model parameters on the biofilm size for
T = 25, which provides a measure of expansion speed. To measure the biofilm
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radius, we compute the contact line position

S(T ) = max
r∈[0,R]

h(r, T ) > b. (6.24)

The results are presented in Figures 6.5 and 6.6. As with the extensional flow
regime, a wide range of biofilm growth is possible for parameters that remain
within an order of unity. The major difference between the two regimes is
that the surface tension coefficient γ∗ affects biofilm size in the lubrication
regime, as Figure 6.5d shows. This was not observed in the extensional flow
results of Figure 5.3f. In contrast, the initial biofilm height affected biofilm
size in the extensional flow regime (see Figure 5.3e), but has minimal effect
in the lubrication regime, as shown in Figure 6.5e.

In the lubrication regime, there is a competition between the strong biofilm–
substratum adhesion and surface tension effects. When cells proliferate,
strong adhesion opposes radial expansion, which restricts biofilm growth to
the vertical direction. Conversely, surface tension forces oppose curvature on
the free surface, and this curvature increases when the biofilm grows vertically.
Surface tension forces subsequently flatten the biofilm profile and transport
mass radially, facilitating biofilm expansion. We therefore observe faster
radial expansion when the surface tension coefficient, γ∗, is increased. This
explains the behaviour seen in Figure 6.5d.

The difference in expansion mechanisms between the lubrication and
extensional flow regimes also explains the observation that initial biofilm
height H0 has negligible effect on biofilm size. In sliding motility, thinner
biofilms expand quickly, because a relatively smaller quantity of new cells
at the leading edge is required for the biofilm to spread. However, due to
the strong biofilm–substratum adhesion, this mechanism is not available in
the lubrication regime, where the biofilm thickness is instead determined by
surface tension forces. When the other parameters are held constant, the
biofilm will tend to adopt the same final shape regardless of initial height,
and expand at similar speed. This also justifies how the initial condition
does not affect biofilm thickness, as Figure 6.7e will show. In their model,
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Figure 6.5: The effects of net biomass production rates, surface tension, and
the initial height on biofilm size.
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Figure 6.6: The effects of parameters that govern the movement, consumption,
and uptake of nutrients on biofilm size.
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Ward and King [120] observe the same behaviour, in which expansion depends
on the initial conditions in the extensional flow regime, but does not in the
lubrication regime.

Since we use the same source terms in both regimes, the effects of cell
production rate ψn, ECM production rate Ψm, and cell death rate Ψd shown
in Figures 6.5a–6.5c are similar to the extensional results in Figure 5.3. When
γ∗ is held constant but non-zero, increased biomass production leads to
faster expansion. This is because biomass production and vertical growth
cause faster increases in curvature. Surface tension then drives greater
radial redistribution of mass, increasing expansion speed. Increased rates of
cell death reduce the cell volume fraction, thereby reducing future biomass
production. Biomass production also explains the discrepancies between the
one-dimensional and two-dimensional models observed throughout Figure 6.5.
As shown in Figure 6.4b, the cell volume fraction remains closer to φn = 0.9
for a larger radius than in the two-dimensional model. This overestimation of
cell volume fraction corresponds to an overestimation of biomass production,
leading to larger biofilm sizes in the one-dimensional model.

The nutrient mass balance equations in the lubrication regime are the same
as in the extensional flow case. As a result, the trends in nutrient transport,
uptake, and consumption parameters are similar to the extensional flow regime,
which is illustrated in Figure 6.6. In addition, we observe a similar dependence
of the biofilm size on the Péclet number, Pe, as in the extensional flow regime.
This is because again the nutrient supply to the biofilm depends more strongly
on uptake from the substratum than advection within the biofilm. Overall,
as outlined in §5.2.2, increasing nutrient availability to the biofilm facilitates
faster expansion. Like Figure 6.5, the one-dimensional lubrication model
shows the same qualitative trends as the full two-dimensional model, while
slightly over-predicting S(T ).
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6.3.2 Biofilm Thickness
In addition to biofilm size, the biofilm thickness also depends on the model
parameters. To illustrate this, for each solution set we compute the index

It(T ) = maxr∈[0,R] h(r, T )
S(T ) , (6.25)

which measures the dimensionless thickness of the biofilm. We plot these
results in Figure 6.7 and 6.8. As described above, Figure 6.7e shows that
the initial biofilm height has negligible impact on thickness. In addition,
the surface tension coefficient γ∗ affects the distribution of biomass in the
biofilm, and not its quantity. Since increasing γ∗ increased the radial size,
this occurs in conjunction with a reduction in thickness, as Figure 6.7d shows.
Conversely, changes to Ψm, Ψd, and all parameters in Figure 6.8 affect the
quantity of biomass created. Therefore, changes that increase the biofilm
radius also increase the thickness, as Figures 6.7b, 6.7c and 6.8 show.

Throughout Figures 6.7 and 6.8, we observe similar trends in biofilm
thickness between the two-dimensional and one-dimensional models. Com-
bining this with the results of Figures 6.5 and 6.6, we conclude that the
one-dimensional model captures the key mechanisms of the lubrication regime,
including the effects of cell proliferation, nutrient transport and uptake, and
surface tension. The only discrepancies between the one-dimensional and two-
dimensional models are that the one-dimensional model slightly overestimates
biomass production and expansion speed, and slightly biases radial expansion
over thickening as ψn increases (see Figure 6.7a). Therefore, although the
one-dimensional model does not capture the vertical variation in the cell
volume fraction, it provides a viable alternative to the two-dimensional model.
The advantage of the one-dimensional model is that it is computationally more
efficient, and potentially more amenable to analysis, than the two-dimensional
model.
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Figure 6.7: The effects of net biomass production rates, surface tension, and
the initial height on dimensionless biofilm thickness, It(T ).
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Figure 6.8: The effects of parameters that govern the movement, consumption,
and uptake of nutrients on dimensionless biofilm thickness, It(T ).
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6.4 Summary

In this chapter, we investigated the lubrication model, where cells adhere
strongly to the substratum, and surface tension plays an important role
in biofilm expansion. This is in contrast to the sliding motility hypothesis
underpinning the extensional flow model, where biofilm–substratum adhesion
and surface tension are assumed weak. Our investigation of the lubrication
model followed a similar path to the extensional flow analysis in Chapter 5.
We again considered an axisymmetric geometry, which in this regime gives
rise to a complicated two-dimensional system of integro-differential equations.
Computing numerical solutions to this model posed a challenge, as it involved
solving a coupled system of six equations on a changing domain. There-
fore, we first presented a solution to the no-slip model of Ward and King
[120]. This validated the non-linear Crank–Nicolson method used throughout,
and demonstrated its numerical convergence. In these solutions, the radial
geometry did not significantly affect expansion speed and the biofilm profile.

Two-dimensional numerical solutions enabled us to predict expansion
speed, biofilm shape, and the distribution of cells in the biofilm. We found
that a thin region with low cell volume fraction developed close to the biofilm–
substratum interface. However, away from this region the cell volume fraction
only depended weakly on z. Exploiting this, we proposed a simplification
to the model where we assumed that φn is independent of z, reducing the
model to one spatial dimension. Despite overestimating the depth-averaged
cell volume fraction, numerical solutions to the one-dimensional model were
qualitatively similar to the full two-dimensional model. The one-dimensional
model therefore provided a computationally efficient alternative for predict-
ing biofilm expansion under strong biofilm–substratum adhesion and large
pressure and surface tension.

To investigate the effect of model parameters on the biofilm size and shape,
we computed numerical solutions to the two-dimensional and simplified one-
dimensional models. This also enabled comparison of expansion mechanisms
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between the lubrication and extensional flow regimes. Although the biofilm
profile was thicker in the lubrication regime, the qualitative dependence of
expansion speed on the model parameters was similar in both regimes. The
key difference was that in the lubrication regime, the value of the surface
tension coefficient γ∗ affects expansion speed. This was due to a competition
between surface tension and the strong adhesion on the biofilm–substratum
interface. Strong adhesion opposes radial expansion, and promotes vertical
growth when cells proliferate. However, vertical growth increases the free
surface curvature. To relieve this curvature, surface tension forces flatten
the biofilm profile by redistributing mass radially, facilitating expansion.
Unlike in the extensional flow regime, the initial condition did not affect the
expansion speed. These results confirmed that surface tension forces and cell
proliferation drive biofilm expansion in the lubrication regime.

As with the extensional flow model results from Chapter 5, the complexity
of the lubrication model makes analysis of two-dimensional pattern formation
more difficult than for the reaction–diffusion model. A potential advantage
of the one-dimensional simplified model is that it may be more analytically
tractable than the full model. This opens the possibility of investigating
the linear stability of solutions to the one-dimensional model to azimuthal
perturbations, which would provide a mechanism for floral pattern formation.
Furthermore, under the assumption that φn is independent of z, the full non-
axisymmetric model reduces from three to two dimensions. We could then
compute these two-dimensional solutions numerically, and compare them with
the linear stability analysis. In addition to these mathematical extensions,
in the future we could also design new experiments to measure and adjust
surface tension and cell–cell adhesion. This will enable us to distinguish
between the extensional flow and lubrication regimes, and could provide data
with which to compare the lubrication regime results.
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Conclusion

Yeasts have extensive effects on human life, from their use in food and drink
production, to their emergence as a leading cause of hospital-acquired in-
fections. In nature, yeasts often exist in biofilm colonies, which are sticky
communities of microbes residing on a surface. These biofilms are respon-
sible for pathogenic infections, as their collective structure enables them to
resist anti-fungal treatment. This has motivated scientists to investigate the
mechanisms responsible biofilm growth and pattern formation. An important
milestone in yeast research was the sequencing of the Saccharomyces cerevisiae
genome. Commonly known as the budding or bakers’ yeast, S. cerevisiae cells
have much in common with more complex plant and animal cells. For these
reasons, S. cerevisiae is often used as a model organism in yeast research.

When inoculated on semi-solid agar in the laboratory, S. cerevisiae can
initiate biofilm formation. These biofilms consist of a thin layer of cells
that initially expands in a uniform circular manner. After some time, the
biofilm then attains the floral morphology, which is a non-uniform pattern
characterised by petal-like structures. Repeated observations of this mor-
phology led researchers to hypothesise common mechanisms for its origin.
One simple hypothesis was that nutrient-limited growth, which involves the
movement and consumption of a depleting nutrient, can generate the pattern.
Others suggested that mechanical interactions between the cells and their
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environment also contributed. This led to the hypothesis that sliding motility,
a passive form of growth driven by cell proliferation and weak adhesion to
the substratum, could explain biofilm growth.

The need for quantitative methods of testing these hypotheses motivated
this thesis. To achieve this, we used a combination of mathematical modelling
and experiments. Our first contribution was the implementation of spatial
statistics to quantify biofilm expansion speed and petal formation. Next, we
demonstrated that nutrient-limited growth is a possible explanation for petal
formation, using experimental data and insights from a reaction–diffusion
model. Another major contribution was the development and analysis of
two thin-film fluid models for biofilm growth. Our models combined the
mechanics of the cells and extracellular matrix, and nutrient limitation in
a single framework. Analysis of our extensional flow model showed that
sliding motility can explain the experimental expansion speed. We then
contrasted these results with biofilm growth driven by surface tension and
strong adhesion to the substratum using our lubrication model.

We used spatial statistics to obtain data for expansion speed and petal
formation from experimental photographs of yeast biofilm growth. First, we
processed these photographs by converting them to binary images indicating
the area occupied by the biofilm. We then introduced the radial statistic,
which enabled us to measure the biofilm radius. Tracking this radius over
time, we found that the assumption of constant-speed radial expansion was
consistent with S. cerevisiae mat formation experiments. To quantify petal
formation, we used an angular pair-correlation function, the power spectrum
of which provided a count of the number of petals. Across all experiments,
we found that mature biofilms contained between two and twelve petals,
with two to five being most common. Combining both metrics provided a
quantitative description of the non-uniform biofilm growth. Spatial statistics
provided a bridge between experiments and mathematical models, and enabled
quantitative comparison between them.

The remainder of our research involved the construction and analysis of
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mathematical models, and the comparison of modelling results with experimen-
tal data. Abstract mathematical models provided simplified representations
of the complex processes of biofilm formation, and allowed us to focus on
whether particular mechanisms could drive pattern formation. We began by
investigating the hypothesis that nutrient-limited growth is the mechanism of
petal formation. We analysed a reaction–diffusion system for the numerical
cell density and nutrient concentration. Since cell spread is not consistent
with Fickian diffusion, the key feature of our model was a non-linear, degen-
erate diffusion term for the yeast cells. Our minimal reaction–diffusion model
neglected cell mechanics and the extracellular matrix, which enabled us to
isolate the effect of nutrient-limited growth on pattern formation.

We showed that the reaction–diffusion model admits travelling wave
solutions with compact support, and used these solutions to estimate the
ratio of cell to nutrient diffusivity. Our motivation was that travelling wave
solutions provide an explanation for constant-speed radial expansion, an
assumption consistent with data from S. cerevisiae experiments. Making the
ansatz that travelling waves exist reduced the reaction–diffusion model to a
three-dimensional dynamical system. We used geometric singular perturbation
theory to investigate the existence of travelling wave solutions in the limit
of small diffusivity ratio, D. Analysis of the reduced problem showed that
travelling waves exist for D = 0. We then used the layer problem to obtain an
approximation for the slow manifold, on which solutions for small, but non-
zero, D exist. Numerical solutions to the dynamical system then suggested
that, for each value of D, sharp-fronted travelling waves existed for a unique
critical wave speed, ccrit. Sharp-fronted travelling waves solutions arose in
numerical solutions to the full model with arbitrary initial conditions. Since
these solutions represent biofilms of finite size, we used them to estimate D
from experimental data. This provided a complete set of parameters for the
reaction–diffusion model.

Having parametrised the model, we used the linear stability analysis of
Müller and van Saarloos [64] to show that the reaction–diffusion model predicts
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petal formation. For each experimentally feasible D, linear stability analysis
predicted that planar travelling wave solutions are unstable to transverse
perturbations. We found good agreement between the unstable wave numbers
and the petal width measured in experiments. Two-dimensional numerical
solutions verified the linear stability analysis results, and confirmed that
planar results provide a good approximation to circular biofilms. Based
on this, we concluded that nutrient-limited growth is a possible mechanism
for the formation of floral patterns in yeast biofilms, and that non-linear
degenerate cell diffusion can provide an appropriate description of cell spread.

To investigate the effect of mechanics on biofilm growth, we derived a
two-phase fluid model. This model addressed weaknesses in the reaction–
diffusion model, which did not model biofilm mechanics or uptake of nutrients
from the substratum, and could not predict the biofilm height explicitly; the
cell density profile merely provided a proxy for height. In this mechanical
model, we treated the biofilm as a mixture of active living cells and a passive
extracellular matrix. For both fluids, we adopted the Newtonian viscous
constitutive relation. We then used conservation of mass and momentum
to obtain governing equations for the fluid volume fractions and nutrient
concentration. These equations described the mechanics of each fluid phase,
interactions between phases, and the movement, uptake, and consumption of
nutrients. Together with initial and boundary conditions, this constituted a
model for biofilm growth in three dimensions.

The thin-film approximation provided a systematic way to simplify the
three-dimensional mechanical model, and to highlight particular mechanisms
thought to affect growth. The approximation exploited the observation
that the biofilm radius significantly exceeds its height and the substratum
depth. Non-dimensionalisation then introduced the aspect ratio, a small
parameter, into the model equations. We obtained simplified leading-order
models by expanding the variables in power series of the small aspect ratio.
An important step in this process was the identification of distinguished limits
to balance physical features of similar importance, while neglecting those
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of lesser importance. First, we derived a thin-film model in the extensional
flow regime, in which the biofilm adheres weakly to the substratum and cell
proliferation drives expansion. We then considered strong biofilm–substratum
adhesion in the lubrication regime, in which surface tension plays an important
role in biofilm expansion. The extensional flow and lubrication models were
both simpler than the general model, and enabled us to investigate the effects
on growth of sliding motility and cell–cell adhesion respectively.

We used the extensional flow model to show that sliding motility is a
possible mechanism for yeast biofilm expansion. Reynolds and Fink [17]
hypothesised that sliding motility could explain growth in their initial S.
cerevisiae mat formation experiments. Sliding motility involves a sheet of cells
expanding passively as a unit, facilitated by cell proliferation and low friction
between the biofilm and substratum. Our extensional flow model described
this form of growth. We used experimental data and numerical solutions
to estimate parameters for the extensional flow model. All parameters were
O(1), justifying the extensional flow scaling. We obtained excellent agreement
between the model and one-dimensional axisymmetric numerical solutions.
This suggested that sliding motility could explain the experimental growth.
The extensional flow model predicted a non-constant expansion speed, which
provided an even better fit to experimental data than the reaction–diffusion
model.

Having established the biological utility of the extensional flow model,
we used it to show how parameters affected biofilm size and shape. We
performed a local sensitivity analysis to investigate the effect of deviations
from the experimental parameters on biofilm size. We showed that increased
production of cells and EPS promoted faster expansion, with cell production
rate being the most important determinant. We also attained faster expansion
by increasing nutrient supply to the leading edge of the biofilm. This was
achieved by increasing the nutrient uptake rate, or by decreasing nutrient
depletion, diffusion, and consumption rates. Initially thinner biofilms also
expanded faster, because they required less nutrient to sustain their thickness.
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Compared to the reaction–diffusion model for which diffusion ratio was the
only determinant, this analysis provided a richer description of the factors
affecting expansion speed.

Unlike the reaction–diffusion model, the extensional flow model also
enabled us to predict the biofilm height. Although not present in S. cerevisiae
mats, some biofilms of wild yeast form a ridge close to the leading edge. Using
different parameters to the S. cerevisiae mats, the extensional flow model
reproduced this ridge formation. We then investigated how the biofilm profile
depends on the surface tension coefficient, γ∗. Increased values of γ∗ generated
stronger resistance to free surface curvature, and inhibited ridge formation.

In contrast to the extensional flow model, the lubrication model represented
a regime where cells adhered strongly to the substratum. In this regime,
pressure in the biofilm could be large, and we also assumed surface tension
to be large. Since the leading-order fluid velocities and volume fractions
depended on z, the axisymmetric lubrication model was two-dimensional.
We computed numerical solutions to this model, which described biofilm
expansion and the spatial distribution of cells. Since the cell volume fraction
depended weakly on z, we proposed a simplified model that neglected this
dependence. This simplified model was one-dimensional, and represented a
computationally more efficient alternative to the full two-dimensional model.

We performed a local sensitivity analysis to investigate the mechanisms
governing expansion speed and thickness in biofilms adhering strongly to the
substratum. In these solutions, we observed a competition between strong
adhesion and surface tension. When cells proliferated, strong adhesion drove
growth in the vertical direction. However, this vertical growth increased
the curvature of the biofilm surface. Surface tension forces opposed this
curvature by redistributing mass radially, facilitating expansion. Sensitivity
analysis also revealed that although the simplified one-dimensional model
overestimated expansion speed, it captured the same qualitative trends as the
full two-dimensional model. This validated the assumption that cell volume
fraction depended weakly on z.
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Synthesising the reaction–diffusion and mechanical model provides a more
complete understanding of biofilm growth and pattern formation. Being
simpler, the minimal reaction–diffusion model was more amenable to analysis
than both thin-film fluid models. We exploited this major advantage of
the reaction–diffusion model, and showed that nutrient-limited growth is a
plausible explanation for both biofilm expansion and the floral morphology.
However, the non-linear diffusion mechanism for cell spread was phenomeno-
logical, and the reaction–diffusion model neglected mechanics, the details
of nutrient uptake from the substratum, and the biofilm thickness. The
extensional flow model for sliding motility addressed these weaknesses, and
provided a more detailed and accurate explanation of biofilm expansion.

In the future, we plan to investigate whether the thin-film extensional flow
model predicts floral pattern formation. This would involve investigating the
linear stability of model solutions to small-amplitude azimuthal perturbations.
Since these solutions are not travelling waves, the stability analysis will
involve time-dependent base states, increasing its complexity. Therefore, we
also plan to investigate petal formation using two-dimensional numerical
solutions of the extensional flow model. If these solutions predict petal
formation, this would provide more evidence that sliding motility underpins
yeast biofilm growth. Furthermore, we have now shown that the simplified
one-dimensional axisymmetric lubrication model is a good approximation of
the full lubrication model. We also plan to use the one-dimensional lubrication
model to determine whether petals can form in this regime.

Our mechanical model also provides a framework on which to add more
features that may affect yeast biofilm expansion. For example, we plan
to investigate the mechanism of osmotic swelling. This will enable us to
understand how fluid transport between the agar and biofilm affects the
divergent growth observed on media of different agar concentration. We could
extend this further by considering growth on viscoelastic agar, rather than
the rigid substrata considered here. We would then impose continuity of
shear stress on the biofilm–substratum interface, and investigate the effect of
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Chapter 7. Conclusion

agar deformation on biofilm expansion and shape. The additional questions
raised by our research provide a rich source of future work. We hope that
a detailed understanding of the mechanisms of biofilm growth will enable
the development of new techniques to combat infections, and to harness the
industrial potential of biofilms.
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Appendix A

Experimental Data

A.1 Mat Biofilm Images
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure A.1: Photographs of the mat formation experiments, taken t =
4099 min ≈ 68 h after inoculation.
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A.1. Mat Biofilm Images

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure A.2: Photographs of the mat formation experiments, taken t =
7013 min ≈ 117 h after inoculation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure A.3: Photographs of the mat formation experiments, taken t =
9866 min ≈ 164 h after inoculation.
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A.1. Mat Biofilm Images

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure A.4: Photographs of the mat formation experiments, taken at the end
of the experiment, t = 14 208 min ≈ 237 h after inoculation.
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A.2 Mat Size Data

Table A.1: Biofilm radius for each experiment, computed using the radial
statistic.

Mat
Radius (mm)

Day 3 Day 5 Day 7 Day 10

A 12.8 23.9 34.0 39.5
B 10.0 18.3 27.5 38.1
C 8.48 16.3 25.4 36.4
D 8.06 14.8 22.5 33.0
E 11.0 19.4 29.2 38.6
F 7.36 12.5 19.3 29.8
G 12.5 22.6 32.9 38.8
H 10.9 20.0 29.4 37.9
I 11.8 22.8 33.3 39.7
J 10.2 20.7 34.0 40.3
K 12.5 22.4 32.7 39.9
L 9.04 16.9 25.2 34.6
M 10.2 19.7 29.5 40.3

Mean 10.4 19.3 28.8 37.5
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A.2. Mat Size Data

Table A.2: The approximate cell count and the final biofilm area for each
experiment.

Mat Cell count Area (mm2)

A 1.55× 1010 4898
B 1.50× 1010 4556
C 1.71× 1010 4145
D 1.46× 1010 3489
E 1.54× 1010 4664
F 1.49× 1010 2999
G 1.69× 1010 4758
H 1.28× 1010 4522
I 1.29× 1010 5037
J 1.55× 1010 5036
K 1.40× 1010 4999
L 1.07× 1010 3889
M 1.48× 1010 5052

Mean 1.46× 1010 4465
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A.3 Power Spectra
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A.3. Power Spectra
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Figure A.5: Power spectra of the angular pair-correlation functions computed
from the mat images in Figure A.4, taken at the end of the mat formation
experiment.
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Appendix B

Numerical Methods

In this appendix, we describe the numerical methods used throughout the
thesis. We first introduce our method of solving the reaction–diffusion model
in two dimensions, which is used to produce results in Chapter 3. We then
discuss the methods used to solve the axisymmetric thin-film models. This
covers both the extensional flow and lubrication regimes, the results of which
are relevant to Chapters 5 and 6 respectively.

B.1 Reaction–Diffusion Model
We compute solutions to the two-dimensional reaction–diffusion model (3.40)
on an equispaced Cartesian grid. We define ∆x and ∆y to be the constant grid
spacing in the x and y directions respectively, and ∆t is the constant time step
size. We denote the cell density nki,j = n(xi, yj, tk) and nutrient concentration
gki,j = g(xi, yj, tk), where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . Nt are
indices of grid points xi and yj, and time steps tk, respectively. To discretise
the equations, we employ a second-order accurate central finite difference
scheme in space, and a Crank–Nicolson scheme for time stepping. We linearise
the equations by approximating the non-linear terms using known data from
the previous time step. Under this scheme, discretising the model equations
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(3.40) yields

nk+1
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∆t = D

2

[
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(B.1a)
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(B.1b)

for i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . Nt − 1. We enforce periodic
conditions on all spatial boundaries by defining fictitious grid points such
that nk0,j = nkNx,j, n

k
Nx+1,j = nk1,j, n

k
i,0 = nki,Ny , and nki,Ny+1 = nki,1, and apply

these in (B.1) at the relevant boundary points.

The discretised equations (B.1) define a linear system to solve for the
2NxNy unknowns nk+1

i,j and gk+1
i,j , given knowledge of the solution at the

previous time step, nki,j and gki,j. We use the generalised minimal residual
(GMRES) method to solve this system of equations at each time step. GMRES
is an iterative method for solving linear systems Ax = b, whereby the exact
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solution is approximated by the vector in the n-th Krylov subspace,

xn ∈ Kn = span{b, Ab, A2b, . . . , An−1b}, (B.2)

that minimises the Euclidean norm of the residual rn = Axn − b [147]. An
advantage of the method is that there is no need to define the matrix A

explicitly, and we instead proceed by defining the matrix-vector product Ax,
and the known vector b at each time step. At each time step, we use the
solution at the previous time step as the initial guess, and accept the solution
if the relative residual norm ‖rn‖/‖b‖ < 1× 10−6 ·

B.1.1 Convergence of the Numerical Method

To determine an appropriate grid spacing and time step size, we perform a grid
convergence study using the test value of D = 0.47, which has a theoretical
wave speed of v = 0.34794. In our tests, we solve (B.1) for t ∈ [0, 100] using the
theoretical travelling wave profiles as initial conditions, and compute the mean
speed at which the front advances in the numerical solution. Convergence
results using ∆x = ∆y = 0.1, and ∆t = 0.001 are shown in Figure B.1.

The biofilm size exhibits approximately quadratic convergence with grid
spacing and linear convergence with time step size. By fitting an appropriate
polynomial to the data in Figures B.1a and B.1b and extrapolating, we can
estimate the numerical wave speed in the zero grid spacing and time step
limit respectively. Doing so, we find that when ∆t = 0.001, the estimated
wave speed as ∆xi → 0 is v = 0.34778. When ∆xi = 0.1, the estimated wave
speed as ∆t→ 0 is v = 0.34809. As these are both accurate to within 0.05%
of the theoretical value, we adopt ∆x = ∆y = 0.1 and ∆t = 0.001 in all
numerical solutions.
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Figure B.1: Numerical convergence results for the scheme (B.1), solved with
the GMRES iterative method. For each data point, we plot the mean wave
speed computed at t = 100.

B.1.2 Circular Numerical Solutions
In §3.3.2, we computed two-dimensional numerical solutions to the reaction–
diffusion model in circular geometry. To test whether the planar linear
stability results are accurate in circular geometry, we used initial conditions
with random perturbations of the form (3.48). Full details of these random
perturbations (before normalisation) appear in Tables B.1–B.3 below. The
corresponding power spectra of the initial condition (left panel) and numerical
solution at t = 10 (right panel) are presented in Figure B.2–B.4.
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Table B.1: Ensembles of random perturbations used in two-dimensional
circular numerical solutions to the reaction–diffusion model with D = 0.181.

Coefficient Trial 1 Trial 2 Trial 3

α2 0.313 -0.741 -0.114
α3 0.665 0.541 0.846
α4 0.959 -0.416 0.752
α5 0.079 0.458 0.968
α6 0.357 0.695 -0.598
α7 0.972 -0.888 0.097
α8 -0.075 -0.593 -0.399
α9 0.698 -0.304 0.726
α10 0.069 -0.919 -0.506
α11 0.785 0.425 0.542
α12 -0.973 -0.672 -0.347

Table B.2: Ensembles of random perturbations used in two-dimensional
circular numerical solutions to the reaction–diffusion model with D = 0.47.

Coefficient Trial 1 Trial 2 Trial 3

α2 0.827 -0.333 -0.609
α3 0.323 -0.582 0.818
α4 0.815 0.841 -0.591
α5 -0.595 -0.505 0.205
α6 0.052 0.078 0.540
α7 -0.482 -0.094 -0.446
α8 -0.977 0.005 -0.132
α9 0.841 -0.742 0.868
α10 0.192 0.335 0.661
α11 0.617 -0.783 -0.166
α12 0.688 -0.672 -0.405
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Figure B.2: Power spectra of the initial condition (left panels) and two-
dimensional circular numerical solutions at t = 10 (right panels), for D =
0.181. Initial conditions are given by (3.48), with the coefficients (before
normalisation) given in Table B.1.
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Figure B.3: Power spectra of the initial condition (left panels) and two-
dimensional circular numerical solutions at t = 10 (right panels), for D =
0.47. Initial conditions are given by (3.48), with the coefficients (before
normalisation) given in Table B.2.
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Figure B.4: Power spectra of the initial condition (left panels) and two-
dimensional circular numerical solutions at t = 10 (right panels), for D =
1.02. Initial conditions are given by (3.48), with the coefficients (before
normalisation) given in Table B.3.
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Table B.3: Ensembles of random perturbations used in two-dimensional
circular numerical solutions to the reaction–diffusion model with D = 1.02.

Coefficient Trial 1 Trial 2 Trial 3

α2 -0.675 0.100 0.823
α3 -0.008 0.703 0.166
α4 -0.319 0.120 -0.690
α5 -0.404 0.162 -0.464
α6 0.533 0.402 -0.676
α7 0.611 0.182 -0.182
α8 0.529 -0.436 0.869
α9 0.397 -0.252 0.589
α10 0.724 0.840 0.434
α11 -0.705 0.941 -0.853
α12 0.260 0.292 -0.543

B.2 Axisymmetric Extensional Flow Model

We now describe the methods used to solve the thin-film models derived in
Chapter 4. We first consider the extensional flow regime. As mentioned in
§5.2, before solving the axisymmetric extensional flow model numerically, we
apply the change of variables (5.13) to map both the biofilm and unoccupied
Petri dish domains to the unit interval. The governing equations to solve
then become

∂h

∂τ
− ξ

S

dS
dτ

∂h

∂ξ
+ 1
Sξ

∂

∂ξ
(ξurh) = (1 + Ψm) φ̄ngbh, (B.3a)
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+ 1
S

(
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dS
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)
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, (B.3b)
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∂
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dS
dτ = ur (1, τ) , (B.3g)

where gso denotes the nutrient concentration in the region of the substratum
that is not occupied by the biofilm. Under the change of variables (5.13), the
initial conditions are

S(0) = 1, h(ξ, 0) = H0
(
1− ξ2

)
, φ̄n(ξ, 0) = 1,

gs(ξ, 0) = gso(ξo, 0) = 1, gb(ξ, 0) = 0,
(B.4)

the boundary conditions become
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∂ξ

∣∣∣∣∣
(0,τ)

= 0, ∂gs

∂ξ

∣∣∣∣∣
(0,τ)

= 0, ∂gb

∂ξ

∣∣∣∣∣
(0,τ)

= 0,

ur(0, τ) = 0,
(B.5a)

∂gso
∂ξo

∣∣∣∣∣
(1,τ)

= 0, ∂gb

∂ξ

∣∣∣∣∣
(1,τ)

= 0, (B.5b)

4
S

∂ur

∂ξ

∣∣∣∣∣
(1,τ)

+ 2ur(1, τ)
S

= 2 (1 + Ψm) φ̄n(1, τ)gb(1, τ)

−γ
∗

S2
∂

∂ξ

(
ξ
∂h

∂ξ

)∣∣∣∣∣
(1,τ)

,

(B.5c)
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and we must also satisfy the continuity conditions

gs (1, τ) = gso (0, τ) , 1
S

∂gs

∂ξ

∣∣∣∣∣
(1,τ)

= 1
R− S

∂gso
∂ξo

∣∣∣∣∣
(0,τ)

. (B.6)

Producing a numerical solution to the 1D axisymmetric extensional flow
model then requires solving the system (B.3), subject to (B.4)–(B.6), on
ξ ∈ [0, 1], ξo ∈ [0, 1], and τ ∈ [0, T ].

We solve the model on equispaced grids in time and space. For the
time domain, we denote the discrete grid points by τ k = (k − 1)∆τ, for
k = 1, . . . , Nτ , where ∆τ = T/(Nτ − 1). For both the biofilm and outer Petri
dish domains, we define ξj = (j−1)∆ξ and ξoj = (j−1)∆ξo for j = 1, . . . , Nξ,

where ∆ξ = 1/(Nξ − 1) and ∆ξo = 1/(Nξo − 1), to represent the discrete
grid points. After prescribing the initial conditions, we first solve (B.3f) to
determine the initial fluid velocity. Following this, at each time step we solve
the equations in the order listed in (B.3), until the final time τNτ = T is
reached.

We discretise the governing equations using a finite difference Crank–
Nicolson scheme. Where necessary, we linearise non-linear terms using data
from the previous time step. In the equations for h and ur, we first expand
relevant derivative terms using the product rule before discretising the equa-
tions. At the interior grid points j = 2, . . . Nξ − 1, the numerical scheme then
reads

hkj − hk−1
j

∆τ +
urk−1

j − ξjurk−1
Nξ

Sk−1

 h
k−1/2
j+1 − hk−1/2

j−1

2∆ξ

+
(
ur

k−1
j+1 − urk−1

j−1

2Sk−1∆ξ +
ur

k−1
j

Sk−1ξj

)
h
k−1/2
j = (1 + Ψm) φ̄nk−1

j gb
k−1
j h

k−1/2
j ,

(B.7a)

φ̄n
k
j − φ̄nk−1

j

∆τ +
urk−1

j − ξjurk−1
Nξ

Sk−1

 φ̄n
k−1/2
j+1 − φ̄nk−1/2

j−1

2∆ξ

= φ̄n
k−1/2
j

[
gb
k−1
j −Ψd − (1 + Ψm) φ̄nk−1

j gb
k−1
j

]
,

(B.7b)
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gs
k
j − gsk−1

j

∆τ −

ξjurk−1
Nξ

Sk−1

 gs
k−1/2
j+1 − gsk−1/2

j−1

2∆ξ

= D

(Sk−1)2 ξj
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(
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)
2 (∆ξ)2
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(Sk−1)2 ξj

(ξj + ξj−1)
(
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k−1/2
j − gsk−1/2

j−1

)
2 (∆ξ)2


−DQs

(
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k−1/2
j − gbk−1

j

)
,

(B.7c)

gso
k
j − gso

k−1
j
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1− ξoj
R− Sk−1ur
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Nξ

)
gso
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2∆ξo
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 gsok−1/2
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k−1/2
j−1

2∆ξ ,

(B.7d)

Pehk−1
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Pehk−1
j ξjur

k−1
Nξ

Sk−1
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+Qb

(
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j gb
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j hk−1

j ,

(B.7e)

194



B.2. Axisymmetric Extensional Flow Model

(
4hkj
Sk−1

)
ur

k
j+1 − 2urkj + ur

k
j−1

(∆ξ)2

+ 4
Sk−1

(
hkj+1 − hkj−1

2∆ξ +
hkj
ξj

)
ur

k
j+1 − urkj−1

2∆ξ

+ 2
Sk−1ξj

(
hkj+1 − hkj−1

2∆ξ −
2hkj
ξj

)
ur

k
j

= 2 (1 + Ψm)


(
φ̄ngbh

)k
j+1
−
(
φ̄ngbh

)k
j−1

2∆ξ

− Γkj ,

(B.7f)

Sk − Sk−1

∆τ = ur
k−1/2
Nξ

, (B.7g)

where we approximate terms at the half time steps using

h
k−1/2
j =

hkj + hk−1
j

2 , (B.8)

and so on. In (B.7f), Γkj denotes the discretised surface tension term, which
we discuss in detail later. In conjunction with appropriate boundary schemes,
each equation in (B.7) describes a linear system to solve for the variables at
τ = τ k.

We need to take particular care at domain boundaries to prevent spurious
oscillations appearing in the solution. At ξ = 0 and ξo = 0, we obtained the
best results by substituting the boundary conditions into discretised forms of
the equations (B.3c) and (B.3e), using one-sided differences for first derivative
terms and introducing fictitious grid points for second derivative terms. For
(B.3a), (B.3b), (B.3d) and (B.3f) we apply the relevant boundary conditions
explicitly. Although the equations (B.3c) and (B.3e) are singular at ξ = 0,
we can use L’Hôpital’s rule to evaluate the relevant terms as ξ → 0. The
boundary schemes are then

−3hk1 + 4hk2 − hk3
2∆ξ = 0, (B.9a)
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−3φnk1 + 4φnk2 − φnk3
2∆ξ = 0, (B.9b)

gs
k
1 − gsk−1

1
∆τ = 4D

(Sk−1)2
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k−1/2
2 − gsk−1/2

1

(∆ξ)2 −DQs

(
gs
k−1/2
1 − gbk−1

1

)
, (B.9c)

gso
k
1 = a, (B.9d)

Pehk−1
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)
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1

(
−3urk−1

1 + 4urk−1
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3

)
Sk−1∆ξ gb

k−1/2
1

= 4hk−1
1

(Sk−1)2
gb
k−1/2
2 − gbk−1/2

1

(∆ξ)2 +Qb

(
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k−1/2
1 − gsk1

)
−Υφ̄nk−1

1 gb
k−1/2
1 hk−1

1 ,

(B.9e)

ur
k
1 = 0, (B.9f)

where a is the value of gs(S(t), t). At ξ = 1 and ξo = 1, we solve the equations
(B.3a), (B.3b) and (B.3d) directly, again using one-sided differences for first
derivatives and introducing fictitious grid points for second derivatives. We
apply the Dirichlet condition for gs, and as (B.3e) is singular as h→ 0, we
impose the boundary condition for gb directly using a one-sided difference.
We also obtained best results by applying the zero radial stress condition
(B.5c) directly at ξ = 1. The boundary schemes are then

hkNξ − h
k−1
Nξ

∆τ +
3urk−1

Nξ
− 4urk−1

Nξ−1 + ur
k−1
Nξ−2

2Sk−1∆ξ +
ur

k−1
Nξ

Sk−1

hk−1/2
Nξ

= (1 + Ψm) φ̄nk−1
Nξ

gb
k−1
Nξ

h
k−1/2
Nξ

,

(B.10a)

φ̄n
k
Nξ
− φ̄nk−1

Nξ

∆τ = φ̄n
k−1/2
Nξ

[
gb
k−1
Nξ
−Ψd − (1 + Ψm) φ̄nk−1

Nξ
gb
k−1
Nξ

]
, (B.10b)

gs
k
Nξ

= a, (B.10c)

gso
k
Nξ
− gsok−1

Nξ

∆τ = D

(R− S)2
2gso

k−1/2
Nξ−1 − 2gso

k−1/2
Nξ

(∆ξ)2 , (B.10d)
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3gbkNξ − 4gbkNξ−1 + gb
k
Nξ−2

2∆ξ = 0, (B.10e)

2
Sk−1

3urkNξ − 4urkNξ−1 + ur
k
Nξ−2

∆ξ + ur
k
Nξ


= 2 (1 + Ψm) φ̄nkNξgb

k
Nξ
− ΓkNξ ,

(B.10f)

where ΓkNξ is the contribution of surface tension to the no radial stress boundary
condition (B.5c).

For the surface tension terms, we expand the derivative terms and write

Γkj =
hkj

(Sk)2

[
∂3h

∂ξ3 + 1
ξ

∂2h

∂ξ2 −
1
ξ2

∂h

∂ξ

]k
j

, for j = 2, . . . Nξ − 1, (B.11a)

ΓkNξ = 1
(Sk)2

[
ξ
∂2h

∂ξ2 + ∂h

∂ξ

]k
Nξ

. (B.11b)

To compute the first spatial derivative of h, we use standard sixth-order
accurate finite difference formulae. We then use the same scheme to compute
the higher derivatives sequentially, that is

∂2h

∂ξ2 = ∂

∂ξ

(
∂h

∂ξ

)
, and ∂3h

∂ξ3 = ∂

∂ξ

[
∂

∂ξ

(
∂h

∂ξ

)]
, (B.12)

where we use the same sixth-order finite difference scheme for each derivative.
This applies a sixth-order accurate finite difference scheme over a wider
stencil than the standard formulae. When γ∗ 6= 0, we required a larger
number of time steps to produce solutions without spurious oscillations in the
surface tension term. Therefore, all solutions involving surface tension were
computed with Nξ = 1001 and Nt = 2000001. The convergence analysis in
§B.2.1 suggests that these solutions will have a relative error of approximately
0.4%.

A feature of our model is that finding the nutrient concentration in the
substratum requires solving both (B.3c) and (B.3d), and ensuring that the
continuity conditions (B.6) are satisfied. To do this, we first solve (B.3c)
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and (B.3d), subject to the Dirichlet conditions gs(1, τ k) = gso(0, τ k) = a, with
a = gs(1, τ k−1), as an initial guess. We then define and compute

f(a) = 1
R− S

∂gso
∂ξo

∣∣∣∣∣
(0,τ)
− 1
S

∂gs

∂ξ

∣∣∣∣∣
(1,τ)

, (B.13)

where a is the initial guess, and we approximate both derivatives in (B.13)
using second-order accurate one-sided finite differences. To satisfy the con-
tinuity condition (B.6), we require f(a) = 0, which we achieve numerically
using Newton’s method. We compute the derivative

df
da = f(a+ δ)− f(a)

δ
, (B.14)

for δ = 1× 10−6, and iterate until a is accurate to 1× 10−6. This procedure
allows us to solve for gs over the entire Petri dish domain at each time step.

B.2.1 Convergence of the Numerical Method
We used Nξ = 8001 grid points and Nτ = 160001 time steps in the numerical
solutions for γ∗ = 0 in §5.2, giving ∆ξ = 1.25× 10−4 and ∆τ = 9.93× 10−5 ≈
1 × 10−4. To verify that this is sufficient to produce a converged solution,
we repeat the computation using a range of grid spacings and time step
sizes. In each case, we compute the contact line position at τ = 15.9, which
yields the results shown in Figure B.5. The contact line position exhibits
linear convergence with both grid spacing and time step size. By fitting a
straight line to the data in Figure B.5 and extrapolating, we can estimate
the numerical contact line position in the zero grid spacing and time step
limit. Doing so, we find that when ∆τ ≈ 1 × 10−4, the estimated contact
line position as ∆ξ → 0 is S(T ) = 13.1752. When ∆ξ = 1.25 × 10−4, the
estimated contact line position as ∆τ → 0 is S(T ) = 13.1678. As these are
within approximately 0.05% of each other and the numerical value for the
chosen grid spacing and time step size, S(T ) = 13.1681, we conclude that our
numerical solution is sufficiently converged.
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(a) Numerical results for ∆τ ≈ 1 ×
10−4, and ∆ξ → 0.
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(b) Numerical results for ∆ξ = 1.25×
10−4, and ∆τ → 0.

Figure B.5: Convergence of the numerical scheme used to solve the axisym-
metric extensional flow model. At each data point, we plot the biofilm radius
attained at the experimental time τ = T.

B.3 Axisymmetric Lubrication Model

Here, we describe the numerical schemes used to solve the thin-film lubrica-
tion model, which describes biofilm expansion driven by strong adhesion and
surface tension. In this model, we consider three cases. First, we describe
our non-linear Crank–Nicolson method of solving the generalised lubrication
equation for the biofilm height. We demonstrate that our method converges,
and then proceed to the full thin-film lubrication model. This requires the
solution of a two-dimensional hyperbolic PDE for the cell volume fraction,
an additional equation for the vertical fluid velocity, and equations for nu-
trient concentrations. Finally, we consider the one-dimensional simplified
model, which provides a good approximation to the full model while saving
computational time.
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B.3.1 Generalised Lubrication Equation

We present the numerical method used to solve the generalised lubrication
equation for conservation of total fluid mass. This equation is

∂h

∂t
+ γ∗

3r
∂

∂r

{
rh3 ∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]}
= J, (B.15)

and is the no-slip model of Ward and King [120] written in radial geometry.
We solve (B.15) on the domain r ∈ [0, R], and t ∈ [0, T ], subject to some
initial condition h(r, 0) = H0(r), and the boundary conditions

∂h

∂r

∣∣∣∣∣
(0,t)

= 0, ∂3h

∂r3

∣∣∣∣∣
(0,t)

= 0, h(R, t) = b,
∂h

∂r

∣∣∣∣∣
(R,t)

= 0. (B.16)

We discretise (B.15) on equispaced grids in space and time, defining
rj = (j − 1)∆r and tk = (k− 1)∆t for j = 1, . . . , Nr, and k = 1, . . . Nt, where
∆r and ∆t are the constant grid spacing and time step size respectively. To
solve the equation, we implement a fully non-linear Crank–Nicolson scheme
[158], and use Newton iteration to address the non-linearity in h. Under this
scheme, the discretisation of (B.15) is

hkj − hk−1
j

∆t + γ∗

3rj(∆r)4

{
rj+1/2

(
h3
)k−1/2

j+1/2
Θ
(
h
k−1/2
j+1/2

)
−rj−1/2

(
h3
)k−1/2

j−1/2
Θ
(
h
k−1/2
j−1/2

)}
= J

k−1/2
j ,

(B.17)

for the interior grid points j = 3, . . . Nr−2. In writing (B.17), we have defined
the function

Θ (hj) = 1
(∆r)3

[
rj+1(hj+3/2 − hj+1/2)− rj(hj+1/2 − hj−1/2)

rj+1/2

−
rj(hj+1/2 − hj−1/2)− rj−1(hj−1/2 − hj−3/2)

rj−1/2

]
,

(B.18)

which is linear in h. The equation (B.18) represents a discretisation of the
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third-order term
Θ = ∂

∂r

[
1
r

∂

∂r

(
r
∂h

∂r

)]
, (B.19)

which appears in (B.15). As in previous schemes, we approximate terms
defined at half points using the averaging

hkj+1/2 =
hkj+1 + hkj

2 , and h
k−1/2
j =

hkj + hk−1
j

2 , (B.20)

for the spatial and temporal grids respectively.

As Θ depends on h, the discretisation (B.17) is non-linear in h, and
requires Newton iteration to solve. To derive the linear system for the Newton
iteration, at each time step we make the initial guess (hkj )(0) = hk−1

j , and
update the solution using

(hkj )(n+1) = (hkj )(n) + h̃, (B.21)

where h̃ is the correction term, and the index n represents the number of
Newton iterations. To derive a linear system for the correction, we substitute
(B.21) into (B.17). For sufficiently small time step size, we expect the
correction term h̃ to be small. We thus ignore terms of O(h̃2), and obtain
the linear system

h̃j
∆t + γ∗

6rj(∆r)4

[
rj+1/2(h3)kj+1/2Θ(h̃j+1/2)
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−3rj−1/2(h2)kj−1/2Θ(hkj−1/2)h̃j−1/2
]
− h̃j

2

[
∂J

∂h

]k
j

= −
hkj − hk−1

j

∆t − γ∗

3rj(∆r)4

[
rj+1/2(h3)k−1/2
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j−1/2Θ(hk−1/2
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]

+
J(hkj ) + J(hk−1

j )
2 .

(B.22)
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Given the initial guess for hkj , we then solve (B.22) for the corrections h̃,
update the guess using (B.21), and iterate until ‖h̃‖ < δ, where we use
the tolerance δ = 1× 10−6. This scheme is then used to compute solutions
to (B.15), and provides a framework for solving the generalised lubrication
equations that appear in our full model and one-dimensional simplification.

Convergence

Before solving the full two-dimensional model, we investigate the numerical
convergence of solutions to (B.15). As per Ward and King [120], we use the
source term

J = H (h− h∗)
[

1√
σ

tanh
(√

σh
)
− ρh

]
, (B.23)

which we can discretise as

Jkj = H
(
hkj − h∗

) [ 1√
σ

tanh
(√

σhkj
)
− ρhkj

]
. (B.24)

Equation (B.22) also involves the derivative of (B.23) with respect to h, which
in discretised form is

[
∂J

∂h

]k
j

= H
(
hkj − h∗

) [
sech2

(√
σhkj

)
− ρ

]
(B.25)

respectively. We then use the non-linear Crank–Nicolson scheme to compute
numerical solutions to the generalised lubrication equation (B.15).

Unlike the extensional flow regime, in the lubrication regime the contact
line position is not computed directly. Therefore, to investigate convergence
we instead use the sequence

(erel)i = ‖hi − hNg‖
‖hNg‖

, (B.26)

where ‖·‖ represents the L2-norm, and (h)i for i = 1, . . . , Ng represent nu-
merical solutions to (B.15) computed with successively finer grids. When
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computing ‖hi−hNg‖, we ensure the vectors are the same length by sampling
at the coarsest grid spacing used. The sequence (B.26) contains the relative
errors in numerical solutions with successively finer grids, which we can use
to compute the rate of convergence.

To investigate convergence with both space and time, we compute solutions
with ∆r = ∆t, and refine both simultaneously. In all numerical solutions we
use the dish size R = 10, and compute solutions until t = 130, as in Ward and
King [120]. For each successive solution, we double the number of grid points
and time steps, and compute the relative error norm (B.26) once all solutions
are complete. A log-log plot of these results is presented in Figure B.6. We
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−1

log(∆r), log(∆t)

lo
g(
e r
el

)

Figure B.6: A log-log plot of the relative norm (B.26) of the differences
between numerical solutions to the Ward–King model at successively finer
grid spacings. In each solution we use ∆r = ∆t. The slope of the graph
indicates the rate of convergence of the numerical method with both time
and space.

observe that the relative error norm (B.26) converges to zero as we refine
the grids. The rate of convergence, given by the slope of the graph, appears
to approach 2 as ∆r,∆t→ 0 (between the two finest grids, the slope of the
log-log plot is 1.833). This is consistent with theory, which predicts that the
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non-linear Crank–Nicolson method will converge quadratically in both space
and time.

B.3.2 Two-Dimensional Full Model

We now outline the numerical method used to solve the full two-dimensional
lubrication model. This method builds on the scheme described in Ap-
pendix B.3.1, which we use to solve the mass conservation equation for the
biofilm height, (6.2a). The only change is that here we consider the source
term J = H(h− h∗)[(1 + Ψm)φ̄ngbh], which we discretise as

Jkj = H
(
hkj − h∗

) [
(1 + Ψm) φ̄nkj gbkjhkj

]
. (B.27)

The numerical method also requires us to discretise the derivative of J with
respect to h, which gives

[
∂J

∂h

]k
j

= H
(
hkj − h∗

) [
(1 + Ψm) φ̄nkj gbkj

]
. (B.28)

We then solve for h using the non-linear Crank–Nicolson method of Ap-
pendix B.3.1.

Next, we describe our method for solving for the cell volume fraction,
φn(r, z, t). Unlike the other variables, the cell volume fraction varies z, and
the equation for φn (6.2b) needs to be solved on the domain 0 < r < R, and
0 < z < h(r, t), which changes with time. To solve (6.2b), we make a change
of variables to map the moving biofilm domain to a rectangle. Introducing

(ξ, ζ, τ) =
(
r,
z

h
, t
)
, (B.29)

we can re-write (6.2b) as

∂φn

∂τ
+ A1

ξ

∂

∂ξ

(
ξh2Θφn

)
+ A2

∂φn

∂ζ
= A3φn, (B.30)
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where Θ is given by (B.19). The new coefficients are given by

A1(ξ, ζ, τ) = −γ∗ζ
(
ζ

2 − 1
)
, (B.31a)

A2(ξ, ζ, τ) = uζ
h
− ζ

h

∂h

∂τ
+ γ∗hΘ ∂h

∂ξ
ζ2
(
ζ

2 − 1
)
, (B.31b)

A3(ξ, ζ, τ) = gb −Ψd −
1
h

∂uζ

∂ζ
− γ∗ζ (ζ − 1)hΘ ∂h

∂ξ
, (B.31c)

where uζ = uz is the vertical velocity component in the new variables. The
advantage of writing the equation in the form (B.30) is that the equation is
defined for the fixed rectangular domain (r, ζ) ∈ (0, R)× (0, 1).

To obtain a solution for φn, we solve (B.30) subject to the boundary
condition

∂φn

∂ξ

∣∣∣∣∣
(0,ζ,τ)

= 0, (B.32)

and some suitable initial condition. As with previous schemes, we adopt
equispaced grids (ξi, ζj, τ k), with ξi = (i− 1)∆ξ, ζj = (j − 1)∆ζ, and τ k =
(k − 1)∆τ, for i = 1, . . . , Nξ, j = 1, . . . Nζ , and k = 1, . . . Nτ , and where
∆ξ, ∆ζ, and ∆τ are the constant spacings for each variable. When solving
(B.30), we use solutions computed at the previous time step to obtain the
coefficients (B.31). In doing so, we compute derivatives with respect to ξ
using standard second-order accurate finite difference formulae, and replace
the time derivative in (B.31b) with a discretised form of the right-hand side
of (6.2a). To discretise Θ, we use the scheme (B.18) for interior grid points
j = 3, . . . Nr − 2, and apply

Θk
2 =

r3
(
hk4 − hk2

)
− r2

(
hk3 − hk1

)
(r2 + r3) (∆r)3 −

r2
(
hk3 − hk1

)
r2 (∆r)3 , (B.33a)

Θk
Nr−1 =

rNr
(
3hkNr − 4hkNr−1 + hkNr−2

)
− rNr−1

(
hkNr − h

k
Nr−2

)
(rNr + rNr−1) (∆r)3

−
rNr−1

(
hkNr − h

k
Nr−2

)
− rNr−2

(
hkNr−1 − hkNr−3

)
(rNr−1 + rNr−2) (∆r)3 ,

(B.33b)
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Θk
Nr = 3

rNr (∆r)2

3rNr
(
3hkNr − 4hkNr−1 + hkNr−2

)
2∆r

−
4 (rNr + rNr−1)

(
hkNr − h

k
Nr−1

)
2∆r +

rNr−1
(
hkNr − h

k
Nr−2

)
2∆r


− 8

(rNr + rNr−1) (∆r)2

rNr
(
3hkNr − 4hkNr−1 + hkNr−2

)
2∆r

−
rNr−1

(
hkNr − h

k
Nr−2

)
2∆r


+ 1
rNr−1 (∆r)2

(rNr + rNr−1)
(
hkNr − h

k
Nr−1

)
2∆r

−
(rNr−1 + rNr−2)

(
hkNr−1 − hkNr−2

)
2∆r

 ,

(B.33c)

at the boundaries. By the symmetry condition (6.8), we enforce Θ1 = 0,
completing the discretisation for all j.

Having discretised the coefficients (A1
k−1
i,j , A2

k−1
i,j , A3

k−1
i,j ), we use a Crank–

Nicolson scheme to solve (B.30). At the interior grid points where i =
2, . . . , Nξ, and j = 2, . . . , Nζ , we apply

φn
k
i,j − φnk−1

i,j

∆τ

+
A1

k−1
i,j

ξi

ξi+1
(
hk−1
i+1

)2
Θk−1
i+1 φn

k−1/2
i+1,j − ξi−1

(
hk−1
i−1

)2
Θk−1
i−1 φn

k−1/2
i−1,j

2∆ξ

+A2
k−1
i,j

φn
k−1/2
i,j+1 − φn

k−1/2
i,j−1

2∆ζ = A3
k−1
i,j φn

k−1/2
i,j ,

(B.34)

where φnk−1/2
i,j = (φnki,j + φn

k−1
i,j )/2 denotes the usual half time step. At r = 0,

we impose the symmetry boundary condition explicitly, by applying

−3φnk1,j + 4φnk2,j − φnk3,j
2∆ξ = 0, (B.35)

for all j = 1, . . . , Nζ . Finally, at all other boundaries we replace relevant
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derivatives with second-order accurate one-sided finite difference formulae.
We have

φn
k
i,1 − φnk−1

i,1

∆τ

+
A1

k−1
i,1

ξi

ξi+1
(
hk−1
i+1

)2
Θk−1
i+1 φn

k−1/2
i+1,1 − ξi−1

(
hk−1
i−1

)2
Θk−1
i−1 φn

k−1/2
i−1,Nζ

2∆ξ

+A2
k−1
i,1
−3φnk−1/2

i,1 + 4φnk−1/2
i,2 − φnk−1/2

i,3

2∆ζ = A3
k−1
i,1 φn

k−1/2
i,1 ,

(B.36a)

φn
k
i,Nζ
− φnk−1

i,Nζ

∆τ

+
A1

k−1
i,Nζ

ξi

ξi+1
(
hk−1
i+1

)2
Θk−1
i+1 φn

k−1/2
i+1,Nζ − ξi−1

(
hk−1
i−1

)2
Θk−1
i−1 φn

k−1/2
i−1,Nζ

2∆ξ

+A2
k−1
i,Nζ

3φnk−1/2
i,Nζ

− 4φnk−1/2
i,Nζ−1 + φn

k−1/2
i,Nζ−2

2∆ζ = A3
k−1
i,Nζ

φn
k−1/2
i,Nζ

,

(B.36b)

for i = 2, Nξ − 1. At the corners of the rectangular domain, we have

φn
k
Nξ,1 − φn

k−1
Nξ,1

∆τ + 3
A1

k−1
Nξ,1

ξNξ

ξNξ
(
hk−1
Nξ

)2
Θk−1
Nξ

φn
k−1/2
Nξ,1

2∆ξ

−4
A1

k−1
Nξ,1

ξNξ

ξNξ−1
(
hk−1
Nξ−1

)2
Θk−1
Nξ−1φn

k−1/2
Nξ−1,1

2∆ξ

+
A1

k−1
Nξ,1

ξNξ

ξNξ−2
(
hk−1
Nξ−2

)2
Θk−1
Nξ−2φn

k−1/2
Nξ−2,1

2∆ξ

+A2
k−1
Nξ,1
−3φnk−1/2

Nξ,1 + 4φnk−1/2
Nξ,2 − φn

k−1/2
Nξ,3

2∆ζ = A3
k−1
Nξ,1φn

k−1/2
Nξ,1 ,

(B.37a)
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φn
k
Nξ,Nζ

− φnk−1
Nξ,Nζ

∆τ + 3
A1

k−1
Nξ,1

ξNξ

ξNξ
(
hk−1
Nξ

)2
Θk−1
Nξ

φn
k−1/2
Nξ,Nζ

2∆ξ

−4
A1

k−1
Nξ,1

ξNξ

ξNξ−1
(
hk−1
Nξ−1

)2
Θk−1
Nξ−1φn

k−1/2
Nξ−1,Nζ

2∆ξ

+
A1

k−1
Nξ,1

ξNξ

ξNξ−2
(
hk−1
Nξ−2

)2
Θk−1
Nξ−2φn

k−1/2
Nξ−2,Nζ

2∆ξ

+A2
k−1
Nξ,Nζ

3φnk−1/2
Nξ,Nζ

− 4φnk−1/2
Nξ,Nζ−1 + φn

k−1/2
Nξ,Nζ−2

2∆ζ = A3
k−1
Nξ,Nζ

φn
k−1/2
Nξ,Nζ

,

(B.37b)

The discretisation (B.34)–(B.37) defines a large, sparse linear system that
can be solved for φnki,j at each time step. Similar to the reaction–diffusion
model in Appendix B.1, we solve this system iteratively using the generalised
minimal residual (GMRES) method. When doing so, we supply the A matrix
explicitly, and use its incomplete LU factorisation as a pre-conditioner. As
with Appendix B.1, at each time step, we use the solution from the previous
time step as the initial guess, and accept the solution if the relative residual
norm ‖rn‖/‖b‖ < 1× 10−6 ·

The next step is to solve (6.2e) and (6.2f) for the nutrient concentrations.
For the nutrient concentration in the substratum, we apply the compact
conservative Crank–Nicolson scheme

gs
k
j − gsk−1

j

∆t = D
(rj+1 + rj)

(
gs
k−1/2
j+1 − gsk−1/2

j

)
2rj (∆r)2

−D
(rj + rj−1)

(
gs
k−1/2
j − gsk−1/2

j−1

)
2rj (∆r)2

−DQs

(
gs
k−1/2
j − gbk−1

j

)
H
(
hk−1
j − h∗

)
,

(B.38)

at the interior grid points j = 2, . . . , Nr−1. To impose the Neumann conditions
at the boundaries, we introduce fictitious grid points such that gs0 = gs2, and
gsNr+1 = gsNr+1, and apply the discretisation (B.38) at j = 1 and j = Nr. We
apply L’Hôpital’s rule to deal with the singular term as r → 0. This yields
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the boundary schemes

gs
k
1 − gsk−1

1
∆t = 4Dgs

k−1
2 − gsk−1/2

1

(∆r)2

−DQs

(
gs
k−1/2
1 − gbk−1

1

)
H
(
hk−1

1 − h∗
)
,

(B.39a)

gs
k
Nr − gs

k−1
Nr

∆t = 2Dgs
k−1
Nr−1 − gs

k−1/2
Nr

(∆r)2

−DQs

(
gs
k−1/2
Nr − gbk−1

Nr

)
H
(
hk−1
Nr − h

∗
)
.

(B.39b)

The schemes (B.38) and (B.39) then define a linear system to solve for gskj .

We use a similar scheme for the nutrient concentration in the biofilm, gb.
Before solving, we use (B.19) to re-write the model equation (6.2f) as

Peh ∂gb
∂t

= H (h− h∗)
[

Peγ∗
3r

∂

∂r
(rΘΦgb)

]

+H (h− h∗)
[

1
r

∂

∂r

(
rh

∂gb

∂r

)
+Qb (gs − gb)−Υφngbh

]
.

(B.40)

The term Θ is defined as in (B.19), and we have introduced

Φ =
∫ h

0
z
(
z

2 − h
)

(1− φn) dz, (B.41)

and we compute the discretised form Φk
j using the trapezoidal rule. At the

boundaries, we again use L’Hôpital’s rule to evaluate singular terms and
otherwise introduce fictitious grid points to apply the Neumann conditions.
Incorporating both interior and boundary points, the full scheme is then

−3gbk1 + 4gbk2 − gbk3
2∆r = 0, (B.42a)
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Pehk−1
j

gb
k
j − gbk−1

j

∆t = H
(
hkj − h∗

) Peγ∗
3rj

[

rj+1
(
hk−1
j+1

)3
Θk−1
j+1Φk−1

j+1gb
k−1/2
j+1 − rj−1

(
hk−1
j−1

)3
Θk−1
j−1Φk−1

j−1gb
k−1/2
j−1

2∆r


+H(hk−1

j − h∗)
(rj+1 + rj)

(
hk−1
j+1 + hk−1

j

) (
gb
k−1/2
j+1 − gbk−1/2

j

)
4rj (∆r)2

−
(rj + rj−1)

(
hk−1
j + hk−1

j−1

) (
gb
k−1/2
j − gbk−1/2

j−1

)
4rj (∆r)2

+Qb

(
gs
k−1
j − gbk−1/2

j

)
−Υφngbk−1/2

j hk−1
j

]
,

(B.42b)

Pehk−1
Nr

gb
k
Nr − gb

k−1
Nr

∆t = H
(
hkj − h∗

) Peγ∗
3rNr

3rNr
(
hk−1
Nr

)3
Θk−1
Nr Φk−1

Nr

2∆r

−
4rNr−1

(
hk−1
Nr−1

)3
Θk−1
Nr−1Φk−1

Nr−1

2∆r +
rNr−2

(
hk−1
Nr−2

)3
Θk−1
Nr−2Φk−1

Nr−2

2∆r

 gbk−1/2
Nr

+H(hk−1
Nr − h

∗)
hk−1

Nr

2gbk−1/2
Nr−1 − 2gbk−1/2

Nr

(∆r)2

+Qb

(
gs
k−1
Nr − gb

k−1/2
Nr

)
−Υφngbk−1/2

Nr hk−1
Nr

]
,

(B.42c)
where the discretisation for Θ follows (B.18) and (B.33).

Finally, the full lubrication model requires us to solve (6.2c) for the depth-
averaged cell volume fraction, and (6.2d) for the vertical component of the
velocity. In both equations, we compute the integrals using the trapezoidal
rule. We solve (6.2d) in the original (r, z, t) variables, which creates a non-
constant grid spacing in z. To compute the second term in (6.2d), we use
standard second-order accurate finite difference formulae, where we allow z

to vary with r to deal with the non-constant grid spacing.
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B.3.3 One-Dimensional Simplified Model
The one-dimensional simplified model requires computing a solution to (6.23).
As the equations (6.23a) and (6.23c) for h and gs are the same as the full
two-dimensional model, we use the methods described in Appendix B.3.2.
Similarly, our scheme to solve (6.23d) is also the same as in Appendix B.3.2,
except here the integral (B.41) can be evaluated analytically to give

Φ = −h
3 (1− φn)

3 , (B.43)

which we then discretise as

Φk
j = −

(
hkj
)3 (

1− φnkj
)

3 . (B.44)

We then use (B.42) to compute the solution for gb.
Compared to the full two-dimensional model, the largest saving in compu-

tational time is in solving for the cell volume fraction, φn. This is because
we now need to only solve the one-dimensional equation (6.23b). To achieve
this, we exploit that the coefficient of the spatial derivative of φn is always
non-negative by using an explicit upwind finite difference scheme. This scheme
is

φn
k
j − φnk−1

j

∆t + uk−1
j

φn
k−1
j − φnk−1

j−1

∆r
= φn

k−1
j

[
gb
k−1
j −Ψd − (1 + Ψm)φnk−1

j gb
k−1
j

]
,

(B.45)

for j = 2, . . . Nr. The advection coefficients are given by

ukj =
γ∗
(
hkj
)2

Θk
j

3 , (B.46)

where Θ is again discretised according to (B.18) and (B.33). To apply the
symmetry condition at r = 0, we solve

φn
k
1 − φnk−1

1
∆t = φn

k−1
1

[
gb
k−1
1 −Ψd − (1 + Ψm)φnk−1

1 gb
k−1
1

]
, (B.47)
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which holds when we apply the boundary condition

∂φn

∂r

∣∣∣∣∣
(0,t)

= 0. (B.48)

This completes the numerical scheme used to solve the one-dimensional
simplified model.
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