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Invading and Receding Biological Populations

� Invading/receding populations common in cell biology1 and ecology.
� Invading: region occupied grows, population establishes.
� Receding: region occupied shrinks, population might become extinct.

� Seek prototype models for range of phenomena:
� Invasion and/or recession.
� Constant speed invasion/recession.
� Well-defined interface between occupied and unoccupied regions.
� 1D/2D populations.

� Continuum, single-species population represented by density u(x; t):

1P. K. Maini, D. L. S. McElwain, and D. I. Leavesley, Tissue Eng. (2004).
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Reaction–Diffusion Models
� Reaction–diffusion equations often used for populations.

� Travelling-wave solutions capture constant invasion speed.
� Few parameters: helps fit models to data.

� Dimensionless Fisher–KPP (FKPP) equation: ut = uxx + u(1� u):

t

� Travelling waves, speed c � 2
� Non-compact support
� Local density cannot decrease

� Porous-Fisher’s (PF) equation: ut = (uux)x + u(1� u):

t

� Travelling waves, speed c � 1=
p

2
� Compact support
� Local density cannot decrease
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One-Phase Stefan Problem

� PDE moving-boundary problem involving the heat/diffusion equation.
� Models change of phase, e.g. ice melting, water solidification.

ut = uxx on 0 < x < S(t);
u(0; t) = 1;

u(S(t); t) = 0;
�St = �ux(S(t); t);

u(x ; 0) = U(x) on 0 < x < S(0):
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1D Fisher–Stefan Model
� Solve FKPP model with Stefan-like condition.
� � represents population loss/gain at interface.

� � > 0 : population invades. � < 0: population recedes.

ut = uxx + u(1� u) on 0 < x < L(t);
ux(0; t) = 0;

u(L(t); t) = uf ;

Lt = ��ux(L(t); t);
u(x ; 0) = U(x) on 0 < x < L(0):
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Travelling Waves and 1D Survival/Extinction Results

� Fisher–Stefan model first proposed by Du and Lin2.
� Survival/extinction for 1D3 and radially-symmetric4 geometry.

� Population survives if region it occupies becomes sufficiently large.
� 1D planar: L(t) > Lc : Radially-symmetric: L(t) > Rc :

� Admits travelling wave solutions for �1 < c <1:

� Unlike FKPP, which only admits feasible solutions for c � 2:

κ = 20

κ = 0.45

Survival

Extinction

2Y. Du and Z. Lin, SIAM J. Math. Anal. (2010).
3M. El-Hachem et al., Proc. Royal Soc. A (2019).
4M. J. Simpson, ANZIAM J. (2020).
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2D Fisher–Stefan Model and Research Questions

� Fisher–Stefan model on general 2D region 
(t); with boundary @
(t):

�

������

ut = uxx + uyy + u(1� u) on x 2 
(t);
u = uf on x 2 @
(t);

V = ��ru � n̂ on x 2 @
(t);
u(x ; y ; 0) = U(x ; y) on x 2 
(0):

Research Questions:
1. How does the geometry of 
 affect survival/extinction in 2D? Under

what conditions will an initially-rectangular population survive?
2. Are planar fronts stable or unstable to shape perturbations? Can we

predict patterns wavelength for unstable solutions?
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Level-Set Method

� Embed interface as zero level-set of signed-distance function �(x ; y ; t):
� Level-set method for each time step:

1. Solve FKPP equation on 
(t):
2. Calculate extension velocity field: F (x ; y ; t) such that F = V on @
:
3. Evolve position of interface (� = 0) by solving level-set equation:

@�

@t
+ F jr�j = 0:

4. Reinitialise � as a signed-distance function.

y x

BA C

u(x,y,t)

D

F(x,y,t)

φ<0

φ>0

φ=0

� Open-source Julia code available on GitHub: alex-tam.
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https://github.com/alex-tam/2D_Fisher-Stefan_Level-Set_Stability


Survival/Extinction in Circular Geometry

� Circular populations survive if ever R(t) > Rc :
5
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5M. J. Simpson, ANZIAM J. (2020).
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Problem 1: Survival/Extinction in 2D
� Survival/extinction in general 2D geometry unexplored.
� We consider survival/extinction in initially-rectangular regions.
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Numerical Solutions for Rectangular Regions
� Initially-rectangular populations can survive or become extinct.
� Rectangle area alone cannot explain survival/extinction.
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Analytical Results: Small u
� As u ! 0; will population recover or become extinct?
� Consider leading-order solution on fixed domain.

X

Y ût = ûxx + ûyy + û
û = 0

(0; 0)

û(x ; y ; t) ∼ A1;1 sin
(�x

X

)
sin

(�y
Y

)
e
�

(
�
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2

Y 2�1
)

t as t !1:

� Survival requires∫



û(x ; y ; t)︸ ︷︷ ︸
Population

accumulation in 
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∫
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�rû � n̂︸ ︷︷ ︸
Loss through @

due to diffusion
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Summary: Survival/Extinction in 2D

� Let Lx(t); Ly (t) be widths of 
(t) in numerical solutions.
� Analysis suggests population survives if ever

Lx > �; and Ly > �

√
L2

x
L2

x � �2 :

� Numerical solutions agree with analytical result.

Survival

Extinction

Initial rectangle 
dimensions

Evolution of widths
Lx(t) and Ly(t) in
numerical solution
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Travelling Wave Solutions
� 1D: Introduce travelling-wave co-ordinate z = x � L(t) = x � ct:
� Solution to boundary-value problem determines travelling wave profile.

� Wavespeed c chosen to satisfy derivative BC at z = 0:

d2u
dz2 + c du

dz + u(1� u) = 0 on �1 < z < 0;

u(�1) = 1; u(0) = uf ;
du(0)
dz = � c

�
:

κ = 0.5
c = 0.197
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Problem 2: Front Stability for Planar Travelling Waves

� For a travelling wave, 
(t) : 0 < x < L(y ; t):
� Periodic BC on top and bottom in numerical solutions.
� Apply sinusoidal shape perturbations to L(t) and u(z):

� Perturbations of form "eiqy+!t : Wave number q; growth rate !:

� Stable: ! < 0: Unstable: ! > 0:

A B

x

y
x=L(y,t)

x
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Linear Stability Analysis

� Perturb front shape and population density.
L(y ; t) = ct + "eiqy+!t +O("2);

� = x � L(y ; t) = x � ct � "eiqy+!t

u(�; y ; t) = u0(�) + "u1(�)e
iqy+!t +O("2):

� Leading-order solution for u0(�) is planar travelling wave.
� First-order correction problem determines growth rate !(q):

d2u1
d�2 + c du1

d�
+

[
1� ! � q2 � 2u0(�)

]
u1(�) = �

(
! + q2) du0

d�
;

u1(�1) = 0; u1(0) = 0;
du1(0)
d�

= �!

�
:
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Linear Stability Results: Advancing Waves

� Advancing planar waves stable to perturbations of all wave numbers.
� Consistent with FKPP equation and planar melting in Stefan problem.
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κ = 0.5
q = 6π/5
uf = 0
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Linear Stability Results: Receding Waves
� Receding planar waves unstable to perturbations of all wave numbers.
� Consistent with planar solidification in Stefan problem.

A B C

D E F

κ = −0.3
q = 6π/5
uf = 0
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Surface Tension Regularisation
� Modify interface condition to incorporate surface tension6.
� Surface tension might represent cell–cell adhesion7.

ut = uxx + uyy + u(1� u) on 0 < x < L(y ; t);
u = 1 on x = 0;

u = uf � 
K on x = L(y ; t);
V = ��ru � n̂ on x = L(y ; t);

u(x ; y ; 0) = U(x ; y) on 0 < x < L(y ; 0):

A B

x

y
u=uf−�K

6J. Chadam and P. Ortoleva, IMA J. Appl. Math. (1983).
7G. Forgacs et al., Biophys. J. (1998).
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Linear Stability Results: Regularised Receding Waves
d2u1
d�2 + c du1

d�
+

[
1� ! � q2 � 2u0(�)

]
u1(�) = �

(
! + q2) du0

d�
;

u1(�1) = 0; u1(0) = �
q2;

du1(0)
d�

= �!

�
:

� Surface tension stabilises some previously unstable receding waves.
� Most unstable wave number indicates preferred pattern wavelength.
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uf = 0.1

γ = 0.1 γ = 0.1
κ = −0.5
q = 6π/5
uf = 0.1
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Summary
� Fisher–Stefan model involves solving FKPP equation on a moving

boundary with Stefan condition.
� We considered 2 problems in 2D:

1. Survival/extinction in initially-rectangular populations.
2. Planar front stability and pattern formation.

� Aspect ratio influences survival/extinction for rectangular populations8.
� Receding planar fronts are unstable, and can generate patterns9.
� Open-source level-set method code in Julia on GitHub: alex-tam.
� Future work: Two-population model.
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8A. K. Y. Tam and M. J. Simpson, Physica D (2022).
9A. K. Y. Tam and M. J. Simpson, arXiv (2022).
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