### A Moving-Boundary Model for Biological Invasion and Recession in Two Dimensions

Alex Tam<sup>1,2</sup> Mat Simpson<sup>2</sup>

<sup>1</sup>UniSA STEM, The University of South Australia <sup>2</sup>School of Mathematical Sciences, Queensland University of Technology

September 21, 2022



# University of South Australia



### Invading and Receding Biological Populations

- Invading/receding populations common in cell biology  $^1$  and ecology.
  - Invading: region occupied grows, population establishes.
  - Receding: region occupied shrinks, population might become extinct.

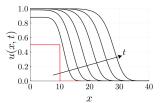


- Seek prototype models for range of phenomena:
  - Invasion and/or recession.
  - Constant speed invasion/recession.
  - Well-defined interface between occupied and unoccupied regions.
  - 1D/2D populations.
- Continuum, single-species population represented by density  $u(\mathbf{x}, t)$ .

<sup>1</sup>P. K. Maini, D. L. S. McElwain, and D. I. Leavesley, Tissue Eng. (2004).

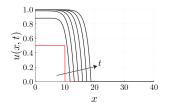
### Reaction–Diffusion Models

- Reaction-diffusion equations often used for populations.
  - Travelling-wave solutions capture constant invasion speed.
  - Few parameters: helps fit models to data.
- Dimensionless Fisher–KPP (FKPP) equation:  $u_t = u_{xx} + u(1 u)$ .



- Travelling waves, speed  $c \ge 2$
- Non-compact support
- Local density cannot decrease

• Porous-Fisher's (PF) equation:  $u_t = (uu_x)_x + u(1-u)$ .



- Travelling waves, speed  $c \ge 1/\sqrt{2}$
- Compact support
- Local density cannot decrease

#### **One-Phase Stefan Problem**

- PDE moving-boundary problem involving the heat/diffusion equation.
- Models change of phase, e.g. ice melting, water solidification.

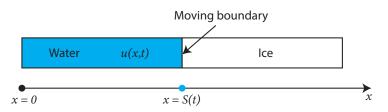
$$u_t = u_{xx} \quad \text{on} \quad 0 < x < S(t),$$
  

$$u(0, t) = 1,$$
  

$$u(S(t), t) = 0,$$
  

$$\beta S_t = -u_x(S(t), t),$$
  

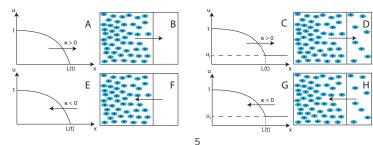
$$u(x, 0) = U(x) \quad \text{on} \quad 0 < x < S(0).$$



#### 1D Fisher-Stefan Model

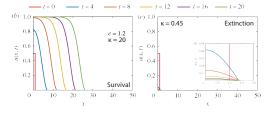
- Solve FKPP model with Stefan-like condition.
- $\kappa$  represents population loss/gain at interface.
  - $\kappa > 0$  : population invades.  $\kappa < 0$ : population recedes.

$$\begin{split} u_t &= u_{xx} + u(1-u) \quad \text{on} \quad 0 < x < L(t), \\ u_x(0, t) &= 0, \\ u(L(t), t) &= u_f, \\ L_t &= -\kappa u_x(L(t), t), \\ u(x, 0) &= U(x) \quad \text{on} \quad 0 < x < L(0). \end{split}$$



#### Travelling Waves and 1D Survival/Extinction Results

- Fisher–Stefan model first proposed by Du and Lin<sup>2</sup>.
- Survival/extinction for 1D<sup>3</sup> and radially-symmetric<sup>4</sup> geometry.
  - Population survives if region it occupies becomes sufficiently large.
  - 1D planar:  $L(t) > L_c$ . Radially-symmetric:  $L(t) > R_c$ .
- Admits travelling wave solutions for  $-\infty < c < \infty$ .
  - Unlike FKPP, which only admits feasible solutions for  $c \ge 2$ .

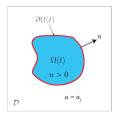




<sup>2</sup>Y. Du and Z. Lin, <u>SIAM J. Math. Anal.</u> (2010).
<sup>3</sup>M. El-Hachem et al., <u>Proc. Royal Soc. A</u> (2019).
<sup>4</sup>M. J. Simpson, <u>ANZIAM J.</u> (2020).

### 2D Fisher–Stefan Model and Research Questions

• Fisher–Stefan model on general 2D region  $\Omega(t)$ , with boundary  $\partial \Omega(t)$ .



I

$$u_t = u_{xx} + u_{yy} + u(1 - u) \quad \text{on} \quad \mathbf{x} \in \Omega(t),$$
  

$$u = u_f \quad \text{on} \quad \mathbf{x} \in \partial \Omega(t),$$
  

$$V = -\kappa \nabla u \cdot \hat{\boldsymbol{n}} \quad \text{on} \quad \mathbf{x} \in \partial \Omega(t),$$
  

$$u(x, y, 0) = U(x, y) \quad \text{on} \quad \mathbf{x} \in \Omega(0).$$

Research Questions:

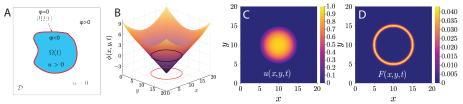
- 1. How does the geometry of  $\Omega$  affect survival/extinction in 2D? Under what conditions will an initially-rectangular population survive?
- 2. Are planar fronts stable or unstable to shape perturbations? Can we predict patterns wavelength for unstable solutions?

#### Level-Set Method

- Embed interface as zero level-set of signed-distance function  $\phi(x, y, t)$ .
- Level-set method for each time step:
  - 1. Solve FKPP equation on  $\Omega(t)$ .
  - 2. Calculate extension velocity field: F(x, y, t) such that F = V on  $\partial \Omega$ .
  - 3. Evolve position of interface ( $\phi = 0$ ) by solving level-set equation:

$$\frac{\partial \phi}{\partial t} + F \left| \nabla \phi \right| = 0.$$

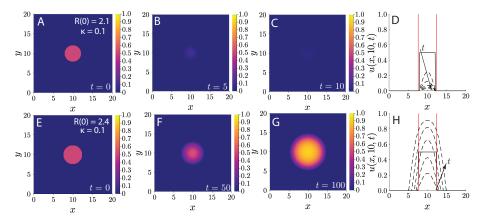
4. Reinitialise  $\phi$  as a signed-distance function.



• Open-source Julia code available on GitHub: alex-tam.

#### Survival/Extinction in Circular Geometry

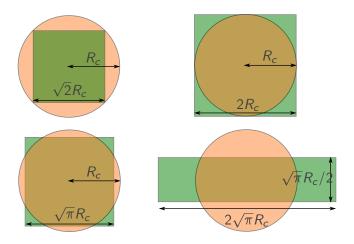
• Circular populations survive if ever  $R(t) > R_c$ .<sup>5</sup>



<sup>5</sup>M. J. Simpson, ANZIAM J. (2020).

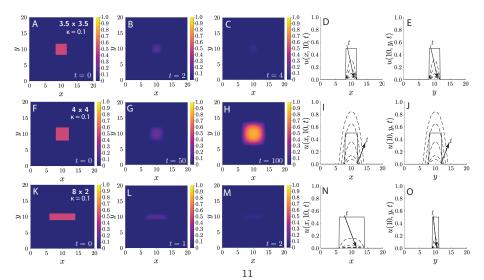
### Problem 1: Survival/Extinction in 2D

- Survival/extinction in general 2D geometry unexplored.
- We consider survival/extinction in initially-rectangular regions.



### Numerical Solutions for Rectangular Regions

- Initially-rectangular populations can survive or become extinct.
- Rectangle area alone cannot explain survival/extinction.



### Analytical Results: Small u

- As  $u \rightarrow 0$ , will population recover or become extinct?
- Consider leading-order solution on fixed domain.

$$\begin{array}{c}
\hat{u}_{t} = \hat{u}_{xx} + \hat{u}_{yy} + \hat{u} \\
 \underbrace{\hat{u}_{t}}_{(0, 0)} \\
 \underbrace{X} \\
 \end{array}$$

$$\hat{u}(x, y, t) \sim A_{1,1} \sin\left(\frac{\pi x}{X}\right) \sin\left(\frac{\pi y}{Y}\right) e^{-\left(\frac{\pi^2}{X^2} + \frac{\pi^2}{Y^2} - 1\right)t}$$
 as  $t \to \infty$ .

• Survival requires

$$\underbrace{\int_{\Omega} \hat{u}(x, y, t)}_{\Omega \to \infty} > \underbrace{\int_{\partial \Omega} -\nabla \hat{u} \cdot \hat{\boldsymbol{n}}}_{\Omega \to \infty} \implies XY > \pi \sqrt{Y^2 + X^2}.$$

Population accumulation in  $\Omega$ 

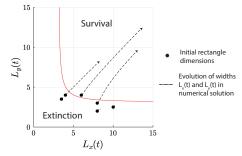
Loss through ∂Ω due to diffusion

#### Summary: Survival/Extinction in 2D

- Let  $L_x(t)$ ,  $L_y(t)$  be widths of  $\Omega(t)$  in numerical solutions.
- Analysis suggests population survives if ever

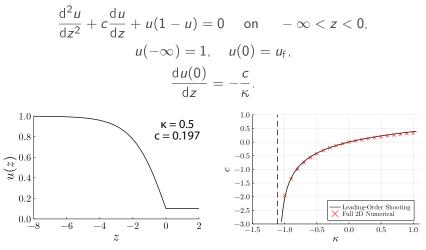
$$L_x > \pi$$
, and  $L_y > \pi \sqrt{\frac{L_x^2}{L_x^2 - \pi^2}}$ .

• Numerical solutions agree with analytical result.



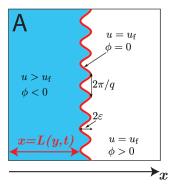
### Travelling Wave Solutions

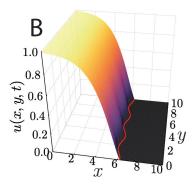
- 1D: Introduce travelling-wave co-ordinate z = x L(t) = x ct.
- Solution to boundary-value problem determines travelling wave profile.
  - Wavespeed c chosen to satisfy derivative BC at z = 0.



#### Problem 2: Front Stability for Planar Travelling Waves

- For a travelling wave,  $\Omega(t) : 0 < x < L(y, t)$ .
- Periodic BC on top and bottom in numerical solutions.
- Apply sinusoidal shape perturbations to L(t) and u(z).
  - Perturbations of form  $\varepsilon e^{iqy+\omega t}$ : Wave number q, growth rate  $\omega$ .
- Stable:  $\omega < 0$ . Unstable:  $\omega > 0$ .





#### Linear Stability Analysis

• Perturb front shape and population density.

$$L(y, t) = ct + \varepsilon e^{iqy + \omega t} + \mathcal{O}(\varepsilon^{2}),$$
  

$$\xi = x - L(y, t) = x - ct - \varepsilon e^{iqy + \omega t}$$
  

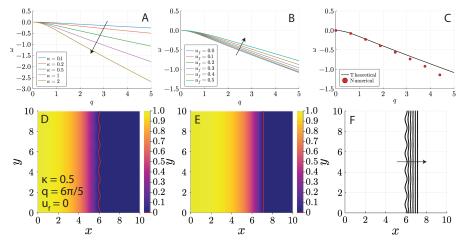
$$u(\xi, y, t) = u_{0}(\xi) + \varepsilon u_{1}(\xi) e^{iqy + \omega t} + \mathcal{O}(\varepsilon^{2}),$$

- Leading-order solution for  $u_0(\xi)$  is planar travelling wave.
- First-order correction problem determines growth rate  $\omega(q)$ .

$$\frac{d^2 u_1}{d\xi^2} + c \frac{du_1}{d\xi} + \left[1 - \omega - q^2 - 2u_0(\xi)\right] u_1(\xi) = -\left(\omega + q^2\right) \frac{du_0}{d\xi},$$
$$u_1(-\infty) = 0, \quad u_1(0) = 0,$$
$$\frac{du_1(0)}{d\xi} = -\frac{\omega}{\kappa}.$$

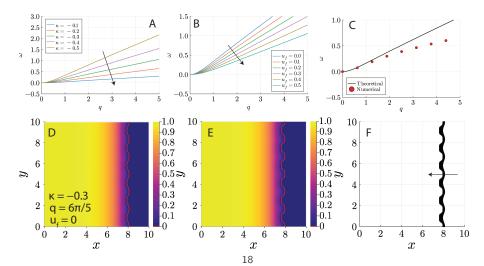
#### Linear Stability Results: Advancing Waves

- Advancing planar waves stable to perturbations of all wave numbers.
- Consistent with FKPP equation and planar melting in Stefan problem.



### Linear Stability Results: Receding Waves

- Receding planar waves unstable to perturbations of all wave numbers.
- Consistent with planar solidification in Stefan problem.



#### Surface Tension Regularisation

- Modify interface condition to incorporate surface tension<sup>6</sup>.
   Surface tension might represent coll-coll adhesion<sup>7</sup>
- Surface tension might represent cell-cell adhesion<sup>7</sup>.

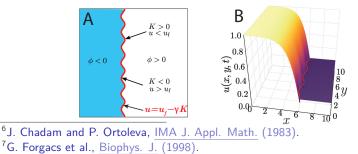
$$u_{t} = u_{xx} + u_{yy} + u(1 - u) \quad \text{on} \quad 0 < x < L(y, t),$$
  

$$u = 1 \quad \text{on} \quad x = 0,$$
  

$$u = u_{f} - \gamma K \quad \text{on} \quad x = L(y, t),$$
  

$$V = -\kappa \nabla u \cdot \hat{n} \quad \text{on} \quad x = L(y, t),$$
  

$$u(x, y, 0) = U(x, y) \quad \text{on} \quad 0 < x < L(y, 0).$$

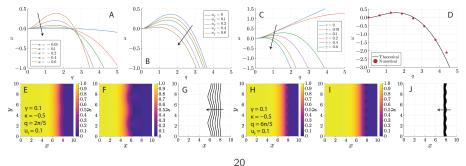


Linear Stability Results: Regularised Receding Waves

$$\frac{d^2 u_1}{d\xi^2} + c \frac{d u_1}{d\xi} + \left[1 - \omega - q^2 - 2u_0(\xi)\right] u_1(\xi) = -\left(\omega + q^2\right) \frac{d u_0}{d\xi},\\u_1(-\infty) = 0, \quad u_1(0) = -\gamma q^2,\\\frac{d u_1(0)}{d\xi} = -\frac{\omega}{\kappa}.$$

• Surface tension stabilises some previously unstable receding waves.

• Most unstable wave number indicates preferred pattern wavelength.



## Summary

- Fisher-Stefan model involves solving FKPP equation on a moving boundary with Stefan condition.
- We considered 2 problems in 2D:
  - 1. Survival/extinction in initially-rectangular populations.
  - 2. Planar front stability and pattern formation.
- Aspect ratio influences survival/extinction for rectangular populations<sup>8</sup>.
- Receding planar fronts are unstable, and can generate patterns<sup>9</sup>.
- Open-source level-set method code in Julia on GitHub: alex-tam.
- Future work: Two-population model.

#### Acknowledgements:

- Mat Simpson.
- Seminar Organisers: Matthew Adams, Mat Simpson, Sarie Gould.
- QUT colleagues.

<sup>8</sup>A. K. Y. Tam and M. J. Simpson, Physica D (2022).

<sup>9</sup>A. K. Y. Tam and M. J. Simpson, arXiv (2022).